Influence of Temperature and Rainfall on the Ascaridia Galli Infection in Domestic Fowl

Author(s):  
R. M. Khadap
1964 ◽  
Vol 38 (1-2) ◽  
pp. 191-200 ◽  
Author(s):  
D. Wakelin

1. Examination of 289 fowl showed that 69·2% were infected with intestinal helminths. The following 6 species were identified: Ascaridia galli (33·6%), Capillaria anatis (10·4%), C. caudinflata (15·9%), C. obsignata (45·3%), Davainea proglottina (0·7%) and Heterakis gallinarum (60·9%).2. No parasites were found in the upper intestines of 151 fowl.3. The results are compared with those of previous surveys and are discussed in relation to the age and management of the birds.


Author(s):  
Alfredo Feria-Velasco ◽  
Guadalupe Tapia-Arizmendi

The fine structure of the Harderian gland has been described in some animal species (hamster, rabbit, mouse, domestic fowl and albino rats). There are only two reports in the literature dealing on the ultrastructure of rat Harderian gland in adult animals. In one of them the author describes the myoepithelial cells in methacrylate-embbeded tissue, and the other deals with the maturation of the acinar cells and the formation of the secretory droplets. The aim of the present work is to analize the relationships among the acinar cell components and to describe the two types of cells located at the perifery of the acini.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


2002 ◽  
Author(s):  
Rebecca A. Sheffield ◽  
Pamela A. Komassa ◽  
Michael R. Baker

Author(s):  
V.P. Bondarenko ◽  
O.O. Matviichuk

Detail investigation of equilibrium chemical reactions in WO3–H2O system using computer program FacktSage with the aim to establish influence of temperature and quantity of water on formation of compounds of H2WO4 and WO2(OH)2 as well as concomitant them compounds, evaporation products, decomposition and dissociation, that are contained in the program data base were carried out. Calculations in the temperature range from 100 to 3000 °С were carried out. The amount moles of water added to 1 mole of WO3 was varied from 0 to 27. It is found that the obtained data by the melting and evaporation temperatures of single-phase WO3 are in good agreement with the reference data and provide additionally detailed information on the composition of the gas phase. It was shown that under heating of 1 mole single-phase WO3 up to 3000 °С the predominant oxide that exist in gaseous phase is (WO3)2. Reactions of it formation from other oxides ((WO3)3 and (WO3)4) were proposed. It was established that compound H2WO4 is stable and it is decomposed on WO3 and H2O under 121 °C. Tungsten Oxide Hydrate WO2(OH)2 first appears under 400 °С and exists up to 3000 °С. Increasing quantity of Н2О in system leads to decreasing transition temperature of WO3 into both liquid and gaseous phases. It was established that adding to 1 mole WO3 26 mole H2O maximum amount (0,9044–0,9171 mole) WO2(OH)2 under temperatures 1400–1600 °С can be obtained, wherein the melting stage of WO3 is omitted. Obtained data also allowed to state that that from 121 till 400 °С WO3–Н2O the section in the О–W–H ternary system is partially quasi-binary because under these temperatures in the system only WO3 and Н2O are present. Under higher temperatures WO3–Н2O section becomes not quasi-binary since in the reaction products WO3 with Н2O except WO3 and Н2O, there are significant amounts of WO2(OH)2, (WO3)2, (WO3)3, (WO3)4 and a small amount of atoms and other compounds. Bibl. 12, Fig. 6, Tab. 5.


1974 ◽  
Vol 75 (1) ◽  
pp. 133-140 ◽  
Author(s):  
B. E. Senior

ABSTRACT A radioimmunoassay was developed to measure the levels of oestrone and oestradiol in 0.5–1.0 ml of domestic fowl peripheral plasma. The oestrogens were extracted with diethyl ether, chromatographed on columns of Sephadex LH-20 and assayed with an antiserum prepared against oestradiol-17β-succinyl-bovine serum albumin using a 17 h incubation at 4°C. The specificity, sensitivity, precision and accuracy of the assays were satisfactory. Oestrogen concentrations were determined in the plasma of birds in various reproductive states. In laying hens the ranges of oestrone and oestradiol were 12–190 pg/ml and 29–327 pg/ml respectively. Levels in immature birds, in adult cockerels and in an ovariectomized hen were barely detectable. The mean concentrations of oestrone and oestradiol in the plasma of four non-laying hens (55 pg/ml and 72 pg/ml respectively) and one partially ovariectomized hen (71 pg/ml and 134 pg/ml respectively) were well within the range for laying hens. It is evident that the large, yolk-filled follicles are not the only source of oestrogens in the chicken ovary.


1969 ◽  
Vol 60 (2) ◽  
pp. 199-209 ◽  
Author(s):  
R. A. Hawkins ◽  
P. J. Heald ◽  
Patricia Taylor

ABSTRACT A limited investigation of the distribution of radioactivity in the tissues of the adult laying hen has been made at differing times after intravenous injection of (6,7-3H) 17β-oestradiol. Uptake by all tissues examined was maximal between 2.0 and 4.0 minutes after injection. There was a marked retention of radioactivity by the oviduct and the liver. Of cerebral tissues examined the uptake of radioactivity was greatest in the pituitary gland. This uptake varied according to the physiological state of the bird. Calculations based on the rates of clearance of intravenous (6,7-3H) 17β-oestradiol indicate that in the adult bird the rate of secretion by the ovary is of the order of 1–2.0 mg oestradiol/24 h.


Sign in / Sign up

Export Citation Format

Share Document