scholarly journals Channel Coding Technique for 5G to Improve Flexibility

Author(s):  
Annushree Kumari

5G wireless network will take place after 4G. It will create many new issues. Some problems like, communication with low BER, and performance might be severe issue. In this thesis, coding methods are proposed in order to decrease the signal loss during the transmission process of data. Also, the LDPC system is explained in order to get good results with lower bit error rate over 5G standards by trying to compare it with systems like, LDPC, Convolutional and Turbo code system. Finally, a framework is designed which is a combination of LDPC codes with polar codes in order to improve information transmission efficiency.

Author(s):  
Jung Hyun Bae ◽  
Ahmed Abotabl ◽  
Hsien-Ping Lin ◽  
Kee-Bong Song ◽  
Jungwon Lee

AbstractA 5G new radio cellular system is characterized by three main usage scenarios of enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC), and massive machine type communications, which require improved throughput, latency, and reliability compared with a 4G system. This overview paper discusses key characteristics of 5G channel coding schemes which are mainly designed for the eMBB scenario as well as for partial support of the URLLC scenario focusing on low latency. Two capacity-achieving channel coding schemes of low-density parity-check (LDPC) codes and polar codes have been adopted for 5G where the former is for user data and the latter is for control information. As a coding scheme for data, 5G LDPC codes are designed to support high throughput, a variable code rate and length and hybrid automatic repeat request in addition to good error correcting capability. 5G polar codes, as a coding scheme for control, are designed to perform well with short block length while addressing a latency issue of successive cancellation decoding.


2014 ◽  
Vol 672-674 ◽  
pp. 883-887
Author(s):  
Li Min Chang ◽  
Qing Wei Dong ◽  
Ye Zhan

The paper briefly introduces the structure principle and excellent characteristics of protograph LDPC codes and designs the serial encoding circuit based on FPGA. On the basis of the further study of Belief Propagation (BP) algorithm, λ-min algorithm and A - min algorithm, decoder is designed adopting the complexity and performance eclectic mixed decoding algorithm. Meanwhile, it is verified by the simulation. The result shows that coding gain can be up to about 6 to 8 db, if it meets the requirements of 10-5bit error rate.


2020 ◽  
Vol 12 (4) ◽  
pp. 123-128
Author(s):  
Lydia Sari ◽  
Masagus M. Ikhsan Assiddiq U.P. ◽  
Syah Alam ◽  
Indra Surjati

Polar code has been proven to obtain Shannon capacity for Binary Input Discrete Memoryless Channel (BIDMC) and its use has been proposed as the channel coding in 5G technology.  However, its performance is limited in finite block length, compared to Turbo or LDPC codes.  This research proposes the use of various CRC codes to complement Polar codes with finite block length and analyses the performance based on Block Error Rate (BLER) to Es/N0 (dB).  The CRC codes used are of degrees 11 and 24, with 3 different polynomial generators for each degree. The number of bits in the information sequence is 32. The list sizes used are 1, 2, 4, and 8. Simulation results show that the concatenation of CRC and Polar codes will yield good BLER vs Es/N0 performance for short blocks of codeword, with rates 32/864 and 54/864.  Concatenating CRC codes with Polar codes will yield a BLER performance of 10-2 with Es/N0 values of -9.1 to -7.5  dB when CRC codes of degree 11 is used, depending on the SC list used. The use of CRC codes of degree 24 enables a BLER performance of 10-2 with Es/N0 values of -7 to -6 dB when the SC list used is 1 or 2.  The use of CRC codes of degree 24 combined with SC list with sizes 4 or 8 will improve the BLER performance to 10-2 with Es/N0 values of -8 to -7.5 dB


2014 ◽  
Vol 24 (04) ◽  
pp. 1450050
Author(s):  
Zhiliang Zhu ◽  
Jingping Song ◽  
Yanjie Song ◽  
Hai Yu

A new multiaddress Co-Chaos Shift keying communication scheme (MA-CoCSK) was proposed based on analyzing the permutation-based differential chaos-shift-keying (PMA-DCSK) scheme and the Antipodal Chaos-Shift-Keying (ACSK) scheme. We also analyzed the bit error rate of the new scheme in Gaussian white noise channel and compared its performance with that of the PMA-DCSK scheme. Theory analysis and simulation results both indicate that the scheme proposed in this paper can not only improve the transmission efficiency of a communication system, but also decrease the bit error rate significantly while increasing the speed compared to PMA-DCSK.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1106
Author(s):  
Vladimir L. Petrović ◽  
Dragomir M. El Mezeni ◽  
Andreja Radošević

Quasi-cyclic low-density parity-check (QC–LDPC) codes are introduced as a physical channel coding solution for data channels in 5G new radio (5G NR). Depending on the use case scenario, this standard proposes the usage of a wide variety of codes, which imposes the need for high encoder flexibility. LDPC codes from 5G NR have a convenient structure and can be efficiently encoded using forward substitution and without computationally intensive multiplications with dense matrices. However, the state-of-the-art solutions for encoder hardware implementation can be inefficient since many hardware processing units stay idle during the encoding process. This paper proposes a novel partially parallel architecture that can provide high hardware usage efficiency (HUE) while achieving encoder flexibility and support for all 5G NR codes. The proposed architecture includes a flexible circular shifting network, which is capable of shifting a single large bit vector or multiple smaller bit vectors depending on the code. The encoder architecture was built around the shifter in a way that multiple parity check matrix elements can be processed in parallel for short codes, thus providing almost the same level of parallelism as for long codes. The processing schedule was optimized for minimal encoding time using the genetic algorithm. The optimized encoder provided high throughputs, low latency, and up-to-date the best HUE.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 953 ◽  
Author(s):  
Yuanchu Yin ◽  
Jiefan Qiu ◽  
Zhiqiang Li ◽  
Mingsheng Cao

When a wireless sensor node’s wireless communication fails after being deployed in an inaccessible area, the lost node cannot be repaired through a debugging interaction that relies on that communication. Visible light communication (VLC) as a supplement of radio wave communication can improve the transmission security at the physical layer due to its unidirectional propagation characteristic. Therefore, we implemented a VLC-based hybrid communication debugging system (HCDS) based on VLC using smartphone and sensor node. For the system’s downlink, the smartphone is taken as the VLC gateway and sends the debugging codes to the sensor node by the flashlight. To improve the transmission efficiency of the downlink, we also propose a new coding method for source coding and channel coding, respectively. For the source coding, we analyze the binary instructions and compress the operands using bitmask techniques. The average compression rate of the binary structure reaches 84.11%. For the channel coding, we optimize dual-header pulse interval (DH-PIM) and propose overlapped DH-PIM (ODH-PIM) by introducing a flashlight half-on state. The flashlight half-on state can improve the representation capability of individual symbols. For the uplink of HCDS, we use the onboard LED of the sensor node to transmit feedback debugging information to the smartphone. At the same time, we design a novel encoding format of DH-PIM to optimize uplink transmission. Experimental results show that the optimized uplink transmission time and BER are reduced by 10.71% and 22%, compared with the original DH-PIM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


2021 ◽  
pp. 1-1
Author(s):  
Yanfei Dong ◽  
Kai Niu ◽  
Jincheng Dai ◽  
Sen Wang ◽  
Yifei Yuan
Keyword(s):  

Author(s):  
XIANGBIN YU ◽  
GUANGGUO BI

Space-time block (STB) coding has been an effective transmit diversity technique for combating fading recently. In this paper, a full-rate and low-complexity STB coding scheme with complex orthogonal design for multiple antennas is proposed, and turbo code is employed as channel coding to improve the proposed code scheme performance further. Compared with full-diversity multiple antennas STB coding schemes, the proposed scheme can implement full data rate, partial diversity and a smaller complexity, and has more spatial redundancy information. Moreover, using the proposed scheme can form efficient spatial interleaving, thus performance loss due to partial diversity is effectively compensated by the concatenation of turbo coding. Simulation results show that on the condition of the same system throughput and concatenation of turbo code, the proposed scheme has lower bit error rate (BER) than those low-rate and full-diversity multiple antennas STB coding schemes.


Sign in / Sign up

Export Citation Format

Share Document