scholarly journals Molecular Docking Study of Alzheimer Disease Responsible Protein Inhibition Activity by Bioactive Ginkgolides

Author(s):  
Ashish Kumar Swami

Terpenoids are major components present in herbal formulations of Ginkgo biloba which are considered to slow down progression of Alzheimer disease. Ginkgolide A, Ginkgolide B, Ginkgolide C, Ginkgolide M, Ginkgolide J, Ginkgolide K and Bilobalide are some of the terpenoids selected for computational theoretical calculations using DFT theory at B3LYP/6-311+G*(d,p) basic set level using Gaussian 16W. To study the interaction between selected terpenoids and selected proteins, molecular docking analysis is carried out using Argus Lab (4.0.1) and Auto Dock (4.2). Calculations are carried out on efficient shape-based search algorithm principle and a score base function to calculate the binding energies between them. ADMET analysis provide properties insight of terpenoids compounds. Results from calculated data reveal that there are possible interactions. This data can help in development of potent protein kinase inhibitor for the treatment of Alzheimer.

2020 ◽  
Vol 8 (9) ◽  
pp. 1201-1221
Author(s):  
Ashishkumar Swami ◽  
◽  
Sangita Sharma ◽  
Liggy Andrews ◽  
◽  
...  

COVID-19 is a new coronavirus originated from Wuhan, China. In 2019. Twenty eight natural bioactive compounds (namely Amentoflavone, Apigenin, Bilobalide, Bilobetin, Catechin, Epigallocatechin, Fustin, Gallocatechin, Ginkgetin, Ginkgolide A, Ginkgolide B, Ginkgolide C, Glycitein, Isoginkgetin, Isorhamnetin, Kaempferol, Luteolin, Myricetin, Nobiletin, Procyanidin, Quercetin, Quercitrin, Rutin, Sciadopitysin, Tamarixetin, Ginkgolide J, Ginkgolide M, and Ginkgolide K) are selected for computational theoretical calculations of molecular docking with crestal structure of COVID-19 Main Protease 6LU7 and COVID-19 chymotrypsin-like protease Kinase- 2GTB. Lipinski\'s rule of five for drug likeness is applied to consider bioactive molecule as potential drug molecule. The interaction study is carried to assess to deactivate progression of COVID-19 using Auto Dock (4.2). Calculations are carried out on efficient shape-based search lemarckian genetic algorithm principle and a score base function. The binding energies are found between -5.59 to -1.75 in COVID-19 Main Protease 6LU7 and between -6.35 to -2.08 in chymotrypsin-like Protease 2GBT. Results from calculated data reveal that there is hydrogen bonding, electrostatic and vanderwaals are possible types of interactions. This data can help in identify best antiviral drug and consider some of the natural bioactive molecules as food supplements for development of inhibitor in the treatment of covid-19 stains.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2324
Author(s):  
Danuta Branowska ◽  
Zbigniew Karczmarzyk ◽  
Ewa Wolińska ◽  
Waldemar Wysocki ◽  
Maja Morawiak ◽  
...  

In this study, we synthesized novel sulfonamides with a 1,2,4-triazine moiety according to pharmacophore requirements for biological activity. All the synthesized compounds were tested in vitro to verify whether they exhibited anticancer activity against the human breast cancer cell lines MCF-7 and MDA-MB-231. Among them, two most active ones, having IC50 values of 50 and 42 µM, respectively, were found to show higher anticancer activity than chlorambucil used as the reference in the in vitro tests. In addition, two other compounds, which had IC50 values of 78 and 91 µM, respectively, exhibited a similar level of activity as chlorambucil. X-ray analysis carried out for two of the compounds confirmed their synthesis pathway as well as their assumed molecular structures. Furthermore, a conformational analysis was performed, and electronic parameters of molecules were characterized using theoretical calculations at AM1 and DFT level. Moreover, molecular docking revealed the mode of binding of the investigated 1,2,4-triazine sulfonamides with the human estrogen receptor alpha (ERα).


2019 ◽  
Vol 12 (2) ◽  
pp. 993-1000 ◽  
Author(s):  
D. Anusha ◽  
S. Sharanya ◽  
Ramya Ramya ◽  
Darling Chellathai David

The lymphomas are a heterogeneous group of cancer of the lymphocytes and the lymphatic system and accounts for up to 3% of all malignancies.1 Most of the drugs currently used for the treatment of lymphoma produce various side effects, hence in this study, we focus on natural compounds, obtained from the medicinal plant Vitex negundo, which exhibits selective toxicity against cancer cells. The objective of this research was to formulate the binding energies and interaction of selected phytochemicals present in the medicinal plant Vitex negundo2 against anaplastic lymphoma kinase protein, which is overexpressed in an anaplastic large cell lymphoma.3, 4,5 The structure of mutant human anaplastic lymphoma kinase protein was retrieved from the Protein Data Bank (PDB ID:4ANL ) and the 3D chemical structure of the phytochemicals present in the medicinal plant Vitex negundo was obtained from the PubChem database. Molecular docking study was performed for these natural compounds to evaluate and analyze their anti-lymphoma-cancer activity. A total of 16 compounds present in Vitex negundo, based on a comprehensive literature survey was selected for this molecular screening. Molecular docking analysis was carried out by Molegro Virtual Docker software, to screen the 16 chosen compounds and rank them according to their binding affinity towards the site of interaction of the oncoprotein, anaplastic lymphoma kinase. Out of the 16 screened phytocompounds, only 4 compounds showed promising interactions against the oncoprotein ALK (4ANL). 6’-p-hydroxybenzoyl mussaenosidic acid exhibited a very good binding with a molecular docking score of -127.723 kcal/mol, ranking first among the compounds screened. This was followed by Betulinic acid, Viridiflorol and protocatechuic acid with molecular docking scores of -95.596 kcal/mol, -76.1648 kcal/mol and -63.0854 kcal/mol and - respectively. The docking scores from the above study shows that the phytocompounds present in Vitex negundo extract exhibits an effective inhibitory effect against anaplastic lymphoma kinase protein that is over expressed in lymphoma.


2020 ◽  
Vol 11 (1) ◽  
pp. 7981-7993

The infection of the global COVID-19 pandemic and the absence of any possible treatment options warrants the use of all available resources to find effective drugs against this scourge. Various ongoing researches have been searching for the new drug candidate against COVID-19 infection. The research objective is based on the molecular docking study of inhibition of the main protease of COVID-19 by natural compounds found in Allium sativum and Allium cepa. Lipinski rule of five and Autodock 4.2 was used by using the Lamarckian Genetic Algorithm to perform Molecular docking to analyze the probability of docking. Further, ADME analysis was also performed by using SwissADME, which is freely available on the web. In the present study, we identified S-Allylcysteine sulfoxide (Alliin), S-Propyl cysteine, S-Allylcysteine, S-Ethylcysteine, S-Allylmercaptocysteine, S-Methylcysteine, S-propyl L-cysteine with binding energies (-5.24, -4.49, -4.99, -4.91, -4.79, -4.76, -5.0 kcal/mol) as potential inhibitor candidates for COVID-19. Out of 7 selected compounds, alliin showed the best binding efficacy with target protein 6LU7. In silico ADME analysis revealed that these compounds are expected to have a standard drug-like property as well. Our findings propose that natural compounds from garlic and onion can be used as potent inhibitors against the main protease of COVID-19, which could be helpful in combating the COVID-19 pandemic.


Author(s):  
Hilal Ozturk ◽  
N. Yorulmaz ◽  
Mustafa Durgun ◽  
Harun Basoglu

Abstract Natural products from plants, such as flavonoids, arouse immense interest in medicine because of the therapeutic and many other bioactive properties. The molecular docking is a very useful method to screen the molecules based on their free binding energies and give important structural suggestions about how molecules might activate or inhibit the target receptor by comparing reference molecules. Alliin and Allicin differ from many other flavonoids because of containing no benzene rings and having nitrogen and sulfur atoms in their structure. In this study Alliin and Allicin affinity on AMPA, NMDA and GABA-A receptors were evaluated in the central nervous system by using the molecular docking method. Both Alliin and Allicin indicated no inhibitory effects. However Alliin showed significant selectivity to human AMPA receptor (3RN8) as an excitatory. The binding energy of glutamate to 3RN8 was -6.61 kcal/mol, while the binding energy of Allin was -8.08 kcal/mol. Furthermore Alliin’s affinity to the other AMPA and NMDA receptors is quite satisfactory compared to the reference molecule glutamate. In conclusion based on the molecular docking study, Alliin can be useful for synaptic plasticity studies whereas might be enhance seizure activity because of the increased permeability to cations. It also can be beneficial to improve learning and memory and can be used as a supportive product to the hypofunction of NMDA associated problems.


Author(s):  
Sevki Adem ◽  
Volkan Eyupoglu ◽  
Iqra Sarfraz ◽  
Azhar Rasul ◽  
Muhammad Ali

COVID-19, a rapidly spreading new strain of coronavirus, has affected more than 150 countries and received worldwide attention. The lack of efficacious drugs or vaccines against SARS-CoV-2 has further worsened the situation. Thus, there is an urgent need to boost up research for the development of effective therapeutics and affordable diagnostic against COVID-19. The crystallized form of SARS-CoV-2 main protease (Mpro) was demonstrated by a Chinese researcher Liu et al. (2020) which is a novel therapeutic drug target. This study was conducted to evaluate the efficacy of medicinal plant-based bioactive compounds against COVID-19 Mpro by molecular docking study. Molecular docking investigations were performed by using Molegro Virtual Docker 7 to analyze the inhibition probability of these compounds against COVID-19. COVID-19 Mpro was docked with 80 flavonoid compounds and the binding energies were obtained from the docking of (PDB ID: 6LU7: Resolution 2.16 Å) with the native ligand. According to obtained results, hesperidin, rutin, diosmin, apiin, diacetylcurcumin, (E)-1-(2-Hydroxy-4-methoxyphenyl)-3-[3-[(E)-3-(2-hydroxy-4- methoxyphenyl)-3-oxoprop-1-enyl]phenyl]prop-2-en-1-one, and beta,beta'-(4-Methoxy-1,3- phenylene)bis(2'-hydroxy-4',6'-dimethoxyacrylophenone have been found as more effective on COVID-19 than nelfinavir. So, this study will pave a way for doing advanced experimental research to evaluate the real medicinal potential of these compounds to cure COVID-19.


Author(s):  
Shanmuga Subramanian S

Abstract Currently the new Coronavirus "COVID-19", also known as SARS-CoV-2, has infected nearly 3 million patients and nearly 200,000+ people have lost their lives due to this pandemic. There is an urgent need to find an antiviral agent that may slow down the spread of the virus. The aim of this study is to assess and evaluate compounds present in leaves of Neem tree (Azadirachta Indica) as potential inhibitors for COVID-19 Main Protease (Mpro) (PDB code: 6LU7). This will be done by blind molecular docking using PyRx and Auto Vina software. The compounds Hydroxychloroquine and Remdesivir were used for comparative study. The binding energies obtained from the docking of 6LU7 with meliacinanhydride, nimocinol, isomeldenin, nimbolide, zafaral, nimbandiol, nimbin, nimbinene, desacetylnimbin were -14.3, -12.4, -12.3, -12.2, -11.9, -11.8, -11.7, -11.7, -11.4 kcal/mol respectively. Therefore Meliacinanhydride (Ki=33.36 pM) and the compounds from Neem leaves may be a potential treatment option against COVID-19. In addition to that the leaves contain others compounds like Quercetin, Zinc,Vitamin A,Vitamin B1,B2,B6, Vitamin C,Vitamin E etc., which may boost immunity also (Garba, 2019) .Further investigation is needed to evaluate the results of this study to consider Neem leaves as potential treatment option as it might inhibit the virus and boost immunity also


2020 ◽  
Vol 14 (10) ◽  
pp. 52
Author(s):  
Usman Abdulfatai ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Sani Uba

In this present investigation, simulated molecular docking study of chloroquine and hydroxychloroquine compounds were investigated on the SARS-CoV2 enzyme to determine the types of amino acids responsible for the biochemical reaction at the binding site. A structure-based docking design technique was explored in designing a novel derivative of chloroquine for the treatment and management of new COVID 19 disease. To achieve this, the molecular docking simulation method was used to investigate the level of chloroquine and hydroxychloroquine (Drugs presently under clinical trial) interactions on SARS-CoV2 enzyme (a causative agent of COVID 19 disease). Chloroquine and hydroxychloroquine which has been debated as drugs for the management of COVID 19 were subjected to molecular docking analysis, and the binding energies generated were found to be -6.1 kcal/mol and -6.8 kcal/mol respectively. Moreover, novel 2-((4-((7-chloroquinolin-4 yl) amino)pentyl)((methylamino)methyl)amino) ethan-1-ol as an anti-SARS-CoV2 protease was designed through the structural modification of hydroxychloroquine. The binding energy of this drug candidate was found to be -6.9 kcal/mol. This novel drug was found to formed hydrogen and conventional interactions with the binding site of SARS-CoV2 protease through amino acids such as Glutamic acid (GLU166), Glycine (GLY143), Phenylalanine (PHE140), Asparagine (ASN142), Histidine (HIS163), His (HIS172, HIS41, HIS163), Leucine (LEU41, LEU27), Glycine (GLY143), Glutamine (GLN189), Methionine (MET49, MET165), Serine (SER 46), Cysteine (CYS145) and Threonine (THR25). With this binding energy, this new drug candidate could bind better to the human SARS-CoV2 protease’ binding site. This research provides a clue for other scientists on various ways of designing and identify the types of amino acids that may be responsible for biochemical action on SARS-CoV2 protease.


2020 ◽  
Author(s):  
LALIT SAMANT ◽  
Vyomesh Javle

COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available, and investigations regarding COVID-19 treatment are lacking. Crystallised COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess drugs found in literature as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. The docking was cross-validated using Swiss Dock. COVID-19 Mpro was docked with several compounds, and docking was analysed by Biovia Discovery Studio 2020. Quinine and hydroxychloroquine were used as standards for comparison. The binding energies obtained from the docking of 6LU7, 2GTB with screened drugs viz., Quinine, Artesunate, Clotrimazol, Artemether, Quercetin, Mefloquine, ciprofloxacin, clindamycin, cipargamin, SJ-733 were in between -7.0 to -9.6 kcal/mol. On consideration of similar binding energy obtained from Autodock vina and SWISSDock and interaction residue pattern specifically (GLU 166,CYS 145, CYS44 and MET 49 residue) for SJ-733 & JPC-3210 may represent potential treatment options, and appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use against CoV.


Author(s):  
Siti Khaerunnisa ◽  
Hendra Kurniawan ◽  
Rizki Awaluddin ◽  
Suhartati Suhartati ◽  
Soetjipto Soetjipto

COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available and investigations regarding COVID-19 treatment are lacking. Liu et al. (2020) successfully crystallised the COVID-19 main protease (Mpro), which is a potential drug target. The present study aimed to assess bioactive compounds found in medicinal plants as potential COVID-19 Mpro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. COVID-19 Mpro was docked with several compounds, and docking was analysed by Autodock 4.2, Pymol version 1.7.4.5 Edu, and Biovia Discovery Studio 4.5. Nelfinavir and lopinavir were used as standards for comparison. The binding energies obtained from the docking of 6LU7 with native ligand, nelfinavir, lopinavir, kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, epicatechin-gallate, zingerol, gingerol, and allicin were -8.37, -10.72, -9.41, -8.58, -8.47, -8.17, -7.99, -7.89, -7.83, -7.31, -7.05, -7.24, -6.67, -5.40, -5.38, and -4.03 kcal/mol, respectively. Therefore, nelfinavir and lopinavir may represent potential treatment options, and kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, and epicatechin-gallate appeared to have the best potential to act as COVID-19 Mpro inhibitors. However, further research is necessary to investigate their potential medicinal use.


Sign in / Sign up

Export Citation Format

Share Document