scholarly journals Experimental Study During Electrical Discharge Machining of Reinforced Carbon Fiber Plastic Material

Author(s):  
Gaurav Pandey

Abstract: The proper selection of machining conditions and machining parameter is an important aspect, before going to machine a carbon-fiber composite material by Die sinking electrical discharge machining (EDM). Because these conditions will determine such important characteristics as; Material removal rate (MRR), Electrode wears rate (EWR), and Surface roughness (R). The purpose of this work is to determine the optimal values of machining parameters of electrical discharge machine, while machining carbon-fiber-composite with copper electrode. The work has been based on the affect of four design factors: pulse current(Ip) supplied by power supply system of electrical discharge machine (EDM), pulse-on-time(TON), gap voltage(Vg) and duty cycle () on such characteristic like material removal rate (MRR), electrode wear rate(EWR), and surface roughness(Ra) on work-piece surface. This work has been done by means of the technique of design of experiment (DOE), which provides us to perform the above-mentioned analysis with small number of experiments. In this work, a L9 orthogonal array is used to design the experiment. The adequate selection of machining parameters is very important in manufacturing system, because these parameters determine the surface quality and dimensional accuracy of the manufactured part. The optimal setting of the parameters are determined through experiments planned, conducted and analyzed using the Taguchi method. It is found that material removal rate (MRR) reduces substantially, within the region of experimentation, if the parameters are set at their lowest values, while the parameters set at their highest values increases electrode wear rate (EWR). Keywords: EDM, Material removal rate, Surface roughness, Tool wear rate,

2013 ◽  
Vol 315 ◽  
pp. 369-373
Author(s):  
S. Sulaiman ◽  
A.A. Khan ◽  
M.A. Razak ◽  
M.R. Ibrahim ◽  
M.S. Yusof

The purpose of this paper is to study the effect of current on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, circular shape of copper was used as an electrode with surface area of 100mm². The experiments were repeated for three different values of pulse duration (100µs, 200µs and 400µs) with combination of three different values of discharge current (12A, 16A and 24A). It was found that the pulse duration and current give significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents led to an increase in the MRR, EWR and Ra.


Author(s):  
Vikas Gohil ◽  
Yogesh M Puri

Electrical discharge turning is a unique form of electrical discharge machining process, which is being especially developed to generate cylindrical forms and helical profiles on the difficult-to-machine materials at both macro and micro levels. A precise submerged rotating spindle as a work holding system was designed and added to a conventional electrical discharge machine to rotate the workpiece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating workpiece; thus, mirror image of the tool is formed on the circumference of the workpiece. The machining performance of electrical discharge turning process is defined and influenced by its machining parameters, which directly affects the quality of the machined component. This study presents an investigation on the effects of the machining parameters, namely, pulse-on time, peak current, gap voltage, spindle speed and flushing pressure, on the material removal rate (MRR) and surface roughness (Ra) in electrical discharge turning of titanium alloy Ti-6Al-4V. This has been done by means of Taguchi’s design of experiment technique. Analysis of variance as well as regression analysis is performed on the experimental data. The signal-to-noise ratio analysis is employed to find the optimal condition. The experimental results indicate that peak current, gap voltage and pulse-on time are the most significant influencing parameters that contribute more than 90% to material removal rate. In the context of Ra, peak current and pulse-on time come up with more than 82% of contribution. Finally, the obtained predicted optimal results were verified experimentally. It was shown that the error values are all less than 6%, confirming the feasibility and effectiveness of the adopted approach.


ROTASI ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
Petrus Londa

Electrical Discharge Machining (EDM) adalah non-conventional machining process. EDM dapat memotong semua jenis benda kerja yang bersifat penghantar listrik, terutama digunakan pada benda kerja yang sangat keras dan memiliki bentuk yang rumit, yang tidak dapat dipotong oleh mesin konvensional. Penelitian ini menggunakan metode Taguchi untuk menentukan variabel pemesinan yang secara signifikan mempengaruhi proses pemotongan pada beberapa material elektroda (tembaga, kuningan, alumunium) dan benda kerja dari bahan K460 (amutit S). Taguchi L25 Orthogonal standard arrays dan analysis of variance (ANOVA) dapat menentukan performa variabel pemotongan (PON, POFF, GAP, QDON, SERVO dan LT) dengan variabel yang diteliti adalah Electrode Wear Rate (EWR), Material Removal Rate (MRR) dan Diameter Overcut (DOC). Hasil dari penelitian ini ditampilkan dalam bentuk tabel-tabel dan grafik yang menunjukan variabel pemesinan yang signifikan mempengaruhi proses pemotongan sesuai dengan jenis material elektroda yang digunakan.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Teepu Sultan ◽  
Anish Kumar ◽  
Rahul Dev Gupta

Electrical discharge machining is one of the earliest nontraditional machining, extensively used in industry for processing of parts having unusual profiles with reasonable precision. In the present work, an attempt has been made to model material removal rate, electrode wear rate, and surface roughness through response surface methodology in a die sinking EDM process. The optimization was performed in two steps using one factor at a time for preliminary evaluation and a Box-Behnken design involving three variables with three levels for determination of the critical experimental conditions. Pulse on time, pulse off time, and peak current were changed during the tests, while a copper electrode having tubular cross section was employed to machine through holes on EN 353 steel alloy workpiece. The results of analysis of variance indicated that the proposed mathematical models obtained can adequately describe the performances within the limits of factors being studied. The experimental and predicted values were in a good agreement. Surface topography is revealed with the help of scanning electron microscope micrographs.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 38 ◽  
Author(s):  
Misbah Niamat ◽  
Shoaib Sarfraz ◽  
Wasim Ahmad ◽  
Essam Shehab ◽  
Konstantinos Salonitis

Electro Discharge Machining (EDM) can be an element of a sustainable manufacturing system. In the present study, the sustainability implications of EDM of special-purpose steels are investigated. The machining quality (minimum surface roughness), productivity (material removal rate) improvement and cost (electrode wear rate) minimization are considered. The influence and correlation of the three most important machining parameters including pulse on time, current and pulse off time have been investigated on sustainable production. Empirical models have been established based on response surface methodology for material removal rate, electrode wear rate and surface roughness. The investigation, validation and deeper insights of developed models have been performed using ANOVA, validation experiments and microstructure analysis respectively. Pulse on time and current both appeared as the prominent process parameters having a significant influence on all three measured performance metrics. Multi-objective optimization has been performed in order to achieve sustainability by establishing a compromise between minimum quality, minimum cost and maximum productivity. Sustainability contour plots have been developed to select suitable desirability. The sustainability results indicated that a high level of 75.5% sustainable desirability can be achieved for AISI L3 tool steel. The developed models can be practiced on the shop floor practically to attain a certain desirability appropriate for particular machine limits.


2009 ◽  
Vol 76-78 ◽  
pp. 657-663 ◽  
Author(s):  
Chaiya Praneetpongrung ◽  
Yasushi Fukuzawa ◽  
Shigeru Nagasawa

In recent years, to improve the electrical discharge machining properties, several trials have been applied with the ultrasonic vibration system which was combined on the sinking electrical discharge machine. In this paper, the effects of the ultrasonic vibration were investigated with the designed sinking EDM machine. Some experimental parameters of tool electrode polarity, rotational workpiece speed and directions were examined during the sinking EDM process on the cemented carbide material of G5. Material removal rate, electrode wear ratio and surface roughness were estimated as the machining properties under finishing machining conditions. The experiments were carried out on ultrasonic longitudinal frequency 59 kHz and electrode spindle till 1,000 rpm. Two rotational apparatuses were used simultaneously on the opposite rotational direction during discharge machining. The discharge conditions were estimated with the waveforms analysis. As the results, the EDM device system which was combined ultrasonic vibration, improved the material removal rate and surface roughness of the EDMed workpiece.


2015 ◽  
Vol 76 (6) ◽  
Author(s):  
Bulan Abdullah ◽  
Mohammad Faezeen Mad Nordin ◽  
Muhamad Hafizuddin Mohamad Basir

The purpose of this project is to study the encouragement of three machining parameters on wire electrical discharge machining that consist of peak current (IP), pulse OFF time (OFF) and wire tension (WT) to three machining responses which are cutting rate (CR), material removal rate (MRR) and surface roughness (SR) on high carbon steel (S50C). Brass wire with diameter 0.25 mm was used as the cutting tool for machining a high carbon steel (S50C) using Mitsubishi FX Wire Electrical Discharge Machine (WEDM). The machining parameters such as pulse off time, wire tension and peak current were determined by referring from the guideline in the manual book for Mitsubishi FX Wire Electrical Discharge Machine (WEDM). The calculation of material removal rate and cutting rate were obtained using mathematical equation. The surface roughness was measured using optical measurement “Alicona Infinite Focus” machine. The relationship between material removal rate and surface roughness shows that the optimum machine parameter using brass wire as the electrode is C1. From the spark analysis using brass wire as the machine’s electrode, the deeper the spark occurred, the higher value of the surface roughness. 


Sign in / Sign up

Export Citation Format

Share Document