Review Paper on Machine learning-based prediction of Corona Virus
Abstract: Effective contact tracing of SARS-CoV-2 enables quick and efficient diagnosis of COVID-19 and might mitigate the burden on healthcare system. Prediction models that combine several features to approximate the danger of infection are developed. These aim to help medical examiners worldwide in treatment of patients, especially within the context of limited healthcare resources. They established a machine learning approach that trained on records from 51,831 tested individuals (of whom 4769 were confirmed to own COVID-19 coronavirus). Test set contained data from the upcoming week (47,401 tested individuals of whom 3624 were confirmed to own COVID-19 disease). Their model predicted COVID-19 test results with highest accuracy using only eight binary features: sex, age ≥60 years, known contact with infected patients, and also the appearance of 5 initial clinical symptoms appeared. Generally, supported the nationwide data publicly reported by the Israeli Ministry of Health, they developed a model that detects COVID-19 cases by simple features accessed by asking basic inquiries to the affected patient. Their framework may be used, among other considerations, to prioritize testing for COVID-19 when testing resources are limited and important. Keywords: Machine Learning, SARS-COV-2, COVID-19, Coronavirus.