scholarly journals Covid-19 Detection & Classification of chest X-rays using Deep Learning

Author(s):  
Aditya Singh

Abstract: The deadly Covid-19 virus, also known as the Coronavirus has affected the entire world in a short period of time. This pandemic has affected a lot of people in the entire world and caused many deaths. In these difficult times, it is important for the doctors and the medical researchers to differentiate accurately between positive cases and negative cases. This CNN (Convolutional Neural Network) model will allow us to classify X-ray images into positive cases and the normal ones. This dataset is collected from different public sources as well as from some hospitals and physicians. Our goal is to take help from these X- ray images and develop a model where it predicts and classifies the infected cases. Keywords: CNN, Prediction, Classification, Features, Training, Testing, Deep Learning

Author(s):  
P. Srinivasa Rao ◽  
Pradeep Bheemavarapu ◽  
P. S. Latha Kalyampudi ◽  
T. V. Madhusudhana Rao

Background: Coronavirus (COVID-19) is a group of infectious diseases caused by related viruses called coronaviruses. In humans, the seriousness of infection caused by a coronavirus in the respiratory tract can vary from mild to lethal. A serious illness can be developed in old people and those with underlying medical problems like diabetes, cardiovascular disease, cancer, and chronic respiratory disease. For the diagnosis of the coronavirus disease, due to the growing number of cases, a limited number of test kits for COVID-19 are available in the hospitals. Hence, it is important to implement an automated system as an immediate alternative diagnostic option to pause the spread of COVID-19 in the population. Objective: This paper proposes a deep learning model for classification of coronavirus infected patient detection using chest X-ray radiographs. Methods: A fully connected convolutional neural network model is developed to classify healthy and diseased X-ray radiographs. The proposed neural network model consists of seven convolutional layers with rectified linear unit, softmax (last layer) activation functions and max pooling layers which were trained using the publicly available COVID-19 dataset. Results and Conclusion: For validation of the proposed model, the publicly available chest X-ray radiograph dataset consisting COVID-19 and normal patient’s images were used. Considering the performance of the results that are evaluated based on various evaluation metrics such as precision, recall, MSE, RMSE & accuracy, it is seen that the accuracy of the proposed CNN model is 98.07%.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Umashankar Subramaniam ◽  
M. Monica Subashini ◽  
Dhafer Almakhles ◽  
Alagar Karthick ◽  
S. Manoharan

The proposed method introduces algorithms for the preprocessing of normal, COVID-19, and pneumonia X-ray lung images which promote the accuracy of classification when compared with raw (unprocessed) X-ray lung images. Preprocessing of an image improves the quality of an image increasing the intersection over union scores in segmentation of lungs from the X-ray images. The authors have implemented an efficient preprocessing and classification technique for respiratory disease detection. In this proposed method, the histogram of oriented gradients (HOG) algorithm, Haar transform (Haar), and local binary pattern (LBP) algorithm were applied on lung X-ray images to extract the best features and segment the left lung and right lung. The segmentation of lungs from the X-ray can improve the accuracy of results in COVID-19 detection algorithms or any machine/deep learning techniques. The segmented lungs are validated over intersection over union scores to compare the algorithms. The preprocessed X-ray image results in better accuracy in classification for all three classes (normal/COVID-19/pneumonia) than unprocessed raw images. VGGNet, AlexNet, Resnet, and the proposed deep neural network were implemented for the classification of respiratory diseases. Among these architectures, the proposed deep neural network outperformed the other models with better classification accuracy.


Author(s):  
Д.Ф. Пирова ◽  
Б.Э. Забержинский ◽  
А.Г. Золин

Статья посвящена исследованию методов проектирования интеллектуальных информационных систем и применение моделей искусственных нейронных сетей для диагностического прогнозирования развития пневмонии посредством анализа рентгеновских снимков. В этой работе основное внимание уделяется классификации пневмонии и туберкулеза - двух основных заболеваний грудной клетки - на основе рентгеновских снимков грудной клетки. Данное исследование проводилось при помощи открытой нейросетевой библиотеки Keras и языка программирования Python. Система дает пользователю заключение о том, болен он или нет, тем самым помогая врачам и медицинскому персоналу принять быстрое и информированное решение о наличии заболевания. Разработанная модель, может определить, является ли рентгеновский снимок нормальным или имеет отклонения, которые могут быть пневмонией с точностью 94,87%. Полученные результаты указывают на высокую эффективность применения нейронных сетей при диагностировании пневмонии по рентгеновским снимкам. This paper is devoted to the study of methods of designing intellectual information systems and neural network models application on diagnostic prediction of pneumonia development by X-ray images analysis. This article focuses on the classification of pneumonia and tuberculosis - the two main chest diseases - based on chest x-rays. This study was carried out using the Keras open neural network library and the Python programming language. System returns user a conclusion whether the patient is ill or not helping medical staff to make a quick and informed decision about the presence of the disease. The developed model can determine is the X-ray image normal or has anomalies that can be pneumonia with accuracy up to 94.87%. The results obtained indicate the high performance of the applying neural networks in the diagnosis of pneumonia by X-ray images.


2021 ◽  
Vol 11 (22) ◽  
pp. 10528
Author(s):  
Khin Yadanar Win ◽  
Noppadol Maneerat ◽  
Syna Sreng ◽  
Kazuhiko Hamamoto

The ongoing COVID-19 pandemic has caused devastating effects on humanity worldwide. With practical advantages and wide accessibility, chest X-rays (CXRs) play vital roles in the diagnosis of COVID-19 and the evaluation of the extent of lung damages incurred by the virus. This study aimed to leverage deep-learning-based methods toward the automated classification of COVID-19 from normal and viral pneumonia on CXRs, and the identification of indicative regions of COVID-19 biomarkers. Initially, we preprocessed and segmented the lung regions usingDeepLabV3+ method, and subsequently cropped the lung regions. The cropped lung regions were used as inputs to several deep convolutional neural networks (CNNs) for the prediction of COVID-19. The dataset was highly unbalanced; the vast majority were normal images, with a small number of COVID-19 and pneumonia images. To remedy the unbalanced distribution and to avoid biased classification results, we applied five different approaches: (i) balancing the class using weighted loss; (ii) image augmentation to add more images to minority cases; (iii) the undersampling of majority classes; (iv) the oversampling of minority classes; and (v) a hybrid resampling approach of oversampling and undersampling. The best-performing methods from each approach were combined as the ensemble classifier using two voting strategies. Finally, we used the saliency map of CNNs to identify the indicative regions of COVID-19 biomarkers which are deemed useful for interpretability. The algorithms were evaluated using the largest publicly available COVID-19 dataset. An ensemble of the top five CNNs with image augmentation achieved the highest accuracy of 99.23% and area under curve (AUC) of 99.97%, surpassing the results of previous studies.


Author(s):  
Ankita Shelke ◽  
Madhura Inamdar ◽  
Vruddhi Shah ◽  
Amanshu Tiwari ◽  
Aafiya Hussain ◽  
...  

AbstractIn today’s world, we find ourselves struggling to fight one of the worst pandemics in the history of humanity known as COVID-2019 caused by a coronavirus. If we detect the virus at an early stage (before it enters the lower respiratory tract), the patient can be treated quickly. Once the virus reaches the lungs, we observe ground-glass opacity in the chest X-ray due to fibrosis in the lungs. Due to the significant differences between X-ray images of an infected and non-infected person, artificial intelligence techniques can be used to identify the presence and severity of the infection. We propose a classification model that can analyze the chest X-rays and help in the accurate diagnosis of COVID-19. Our methodology classifies the chest X-rays into 4 classes viz. normal, pneumonia, tuberculosis (TB), and COVID-19. Further, the X-rays indicating COVID-19 are classified on severity-basis into mild, medium, and severe. The deep learning model used for the classification of pneumonia, TB, and normal is VGG16 with an accuracy of 95.9 %. For the segregation of normal pneumonia and COVID-19, the DenseNet-161 was used with an accuracy of 98.9 %. ResNet-18 worked best for severity classification achieving accuracy up to 76 %. Our approach allows mass screening of the people using X-rays as a primary validation for COVID-19.


2020 ◽  
Vol 69 (1) ◽  
pp. 378-383
Author(s):  
T.A. Nurmukhanov ◽  
◽  
B.S. Daribayev ◽  

Using neural networks, various variations of the classification of objects can be performed. Neural networks are used in many areas of recognition. A big area in this area is text recognition. The paper considers the optimal way to build a network for text recognition, the use of optimal methods for activation functions, and optimizers. Also, the article checked the correctness of text recognition with different optimization methods. This article is devoted to the analysis of convolutional neural networks. In the article, a convolutional neural network model will be trained with a teacher. Teaching with a teacher is a type of training for neural networks in which you provide the input data and the desired result, that is, the student looking at the input data will understand that you need to strive for the result that was provided to him.


Computation ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Sima Sarv Ahrabi ◽  
Michele Scarpiniti ◽  
Enzo Baccarelli ◽  
Alireza Momenzadeh

In parallel with the vast medical research on clinical treatment of COVID-19, an important action to have the disease completely under control is to carefully monitor the patients. What the detection of COVID-19 relies on most is the viral tests, however, the study of X-rays is helpful due to the ease of availability. There are various studies that employ Deep Learning (DL) paradigms, aiming at reinforcing the radiography-based recognition of lung infection by COVID-19. In this regard, we make a comparison of the noteworthy approaches devoted to the binary classification of infected images by using DL techniques, then we also propose a variant of a convolutional neural network (CNN) with optimized parameters, which performs very well on a recent dataset of COVID-19. The proposed model’s effectiveness is demonstrated to be of considerable importance due to its uncomplicated design, in contrast to other presented models. In our approach, we randomly put several images of the utilized dataset aside as a hold out set; the model detects most of the COVID-19 X-rays correctly, with an excellent overall accuracy of 99.8%. In addition, the significance of the results obtained by testing different datasets of diverse characteristics (which, more specifically, are not used in the training process) demonstrates the effectiveness of the proposed approach in terms of an accuracy up to 93%.


Sign in / Sign up

Export Citation Format

Share Document