scholarly journals Thermal Investigation on Coated and Uncoated HSS Twist Drill using ANSYS Software

Author(s):  
Bhagyashri Dilip Chaudhari

Abstract: In drilling, a cylindrical hole is produced in workpiece, removing the material inside the workpiece. The cutting tool used in drilling operation is called ‘Twist Drill’; it rotates and allows the material to be removed from the workpiece in the form of chips and thus drill the hole. Cutting fluids or coolants are used to perform this operation smoothly. The coating on the drill bits helps to reduce friction in the cut and the heat buildup in the drill bit. Coating also helps in protecting against corrosion. The present work focuses on the features of uncoated High Speed Steel (HSS) Twist Drill bit and Titanium Nitride (TiN) and Titanium Aluminium Nitride (TiAlN) coated on HSS Drills. The workpiece material was Mild Steel and the drilling operation was done using normal machining condition i.e. in presence of coolant. The cutting parameters used are cutting speed (35.5 m / min), spindle speed (1500 rpm), feed rate (0.2 mm / rev.), depth of cut (10 mm). These parameters were kept constant. Temperatures were measured with the help of thermal imaging camera and with the help of ANSYS software thermal analysis were done. Experimental results showed that the average rise in temperature of uncoated HSS tool was higher as compared to TiN coated and TiAlN coated HSS tools. TiAlN coated drills showed the least average rise in temperature. Keywords: High Speed Steel (HSS) Drill, TiN and TiAlN Coated HSS Twist Drill, Mild Steel (MS), Thermal Analysis, ANSYS Software.

2012 ◽  
Author(s):  
R. J. Talib ◽  
S. Saad ◽  
M. R. M. Toff ◽  
A. H. Hashim

Dalam kajian ini, haus mekanikal Keluli Laju Tinggi (KLT) telah dikaji dengan menjalankan ujian prestasi gerudi ke atas bahan kerja diperbuat daripada keluli lembut. Salutan TiN ke atas HSS twist drills diperolehi dengan menggunakan kaedah bertindak balas frekuensi radio pemercitan magnetron yang mana dibangunkan secara dalaman. Ujian prestasi gerudi dijalankan pada kelajuan pusingan 1,600 psm, kadar suapan 20 mm/minit dengan kedalaman penggerudian 25 mm. Perubahan morfologi permukaan haus diperhatikan dengan menggunakan kaedah Kemikroskopan Imbasan Elektron (KEI). Keputusan morfologi menunjukkan mekanisme rekatan dan haba beroperasi semasa proses penggerudian. Kertas kerja ini juga akan membincangkan secara mendalam proses penjanaan mekanisme haus rekatan dan haba semasa penggerudian gerudi piuhan ke atas plat keluli lembut. Keputusan ujian prestasi gerudi menunjukkan salutan TiN terendap ke atas KLT gerudi piuhan telah meningkatkan umur gerudi melebihi dua kali ganda jika dibandingkan dengan gerudi yang tidak bersalut. Kata kunci: Gerudi KLT, KEI, mekanisme haus, rekatan, haba In this study, High Speed Steel (HSS) twist drills were investigated for mechanical wear by performing drilling test on the work piece of mild steel plate. TiN coatings onto the HSS twist drills were achieved by employing reactive radio frequency (r.f) magnetron sputtering technique, which was developed in–house. The drilling performance tests were set at a rotation speed of 1,600 rpm, feed rate of 20 mm/min, and depth of cut of 25 mm. The morphological changes of the wear surface were observed using Scanning Electron Microscopy (SEM). Results of morphological examination showed that the failure mechanisms in operation during drilling were found to be adhesive and thermal wear mechanism. This paper will also discuss explicitly the processes of adhesive and thermal wear mechanism generated during drilling of twist drill on mild steel plate. Results of drilling performance test showed that the TiN coating deposited on the HSS twist drill had improved drill life by more than 2 times as compared with uncoated drill. Key words: HSS drill, SEM, wear mechanism, adhesive, thermal


2015 ◽  
Vol 786 ◽  
pp. 323-327
Author(s):  
Tze Keong Woo ◽  
Faiz Ahmad ◽  
Safian Sharif

This paper presents a research on experimental and response surface methodology (RSM) approach in evaluating the damage factor of the drilled holes in high speed drilling of glass fiber reinforced polymer (GFRP). From the experiment, the influences of drilling parameters toward damage factor are more prominent in thicker GFRP; where high speed drilling using high speed steel twist drill bit produces lower damage factor in thicker GFRP. Lastly an optimized set of drilling parameters was generated for the use of high speed steel twist drill bit in high speed drilling.


2019 ◽  
Vol 130 ◽  
pp. 01031 ◽  
Author(s):  
The Jaya Suteja ◽  
Yon Haryono ◽  
Andri Harianto ◽  
Esti Rinawiyanti

Polyacetal is commonly used as bushing material because of its low coefficient of friction and self lubricant characteristics. The polyacetal is machined by using boring process to produce bushing in certain surface roughness. The objectives of this research are to optimize three independent parameters (depth of cut, feed rate and principal cutting edge angle) of boring process of polyacetal using high speed steel tool to achieve the highest material removal rate and the required surface roughness. Response Surface Methodology is used to investigate the influence of the parameters and optimize the boring process. The research shows that the influence of the boring process parameters on polyacetal is similar compared to on metal. The result reveals that the optimum result is achieved by applying the value of depth of cut, feed rate, and principal cutting edge angle is 2.9 × 10–3 m, 0.229 mm rev–1, and 99.1° respectively. By applying these values, the maximum material rate removal achieved in this research is 1263.4 mm3 s–1 and the surface roughness achieved is 1.57 × 10–6 m.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985318
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

In this article, a new model of regenerative vibrations due to the deflection of the cutting tool in turning is proposed. The previous study reported chatter as a result of cutting a wavy surface of the previous cut. The proposed model takes into account cutting forces as the main factor of tool deflection. A cantilever beam model is used to establish a numerical model of the tool deflection. Three-dimensional finite element method is used to estimate the tool permissible deflection under the action of the cutting load. To analyze the system dynamic behavior, 1-degree-of-freedom model is used. MATLAB is used to compute the system time series from the initial value using fourth-order Runge–Kutta numerical integration. A straight hard turning with minimal fluid application experiment is used to obtain cutting forces under stable and chatter conditions. A single-point cutting tool made from high-speed steel is used for cutting. Experiment results showed that for the cutting parameters above 0.1mm/rev feed and [Formula: see text]mm depth of cut, the system develops fluctuations and higher chatter vibration frequency. Dynamic model vibration results showed that the cutting tool deflection induces chatter vibrations which transit from periodic, quasi-periodic, and chaotic type.


1984 ◽  
Vol 106 (3) ◽  
pp. 242-247 ◽  
Author(s):  
A. Thangaraj ◽  
P. K. Wright ◽  
M. Nissle

Using metallographic and microhardness techniques, temperature distributions have been determined in twist drills. The methods rely on the fact that certain high speed steel materials exhibit microstructural changes when subjected to temperatures greater than 600°C. Quick-stop specimens have also been obtained to study the metal flow patterns over the drill flutes. These results have been used to comment on the different wear mechanisms that affect the performance of a twist drill. Preliminary results show that bulk plastic flow occurs near the margin of the drill where the temperatures are in the vicinity of 900°C when machining AISI 1045 steel at 40 m/min.


1995 ◽  
Vol 34 (5-6) ◽  
pp. 244-246
Author(s):  
O. A. Mazno ◽  
I. R. Dolgoarshinnykh ◽  
A. A. Yudakov

The small and medium scale industry in drilling and cutting sector widely use cutting tools made by High Speed Steel (HSS). The improvement of lifetime of HSS drill bits helps these establishments to achieve product economy. The improvement in the performance and service lifetime of high-speed steel (HSS) twisted drill bits are studied by depositing Titanium dioxide (TiO2 ) nano-coatings using reactive dc magnetron sputtering Method. Pure titanium (99.99%) metal is used as target material for making nano-coatings in oxygen atmosphere. X-ray diffraction studies indicated change of phase of annealed samples compared to as-deposited coatings. X-ray reflection (XRR) measurements estimated nanocoating thickness on the HSS drill bit around 100nm. The lifetime of TiO2 nano-coated, and cryogenically treated nano-coated tools significantly improved compared to uncoated (bare) HSS drill bit. The tool life has been enhanced by about 16% when TiO2 nano-coatings were made on HSS drill bits. Further lifetime enhancement of 10% was observed when the nanocoated drill bit is given cryogenic treatment in liquid nitrogen. SEM images and EDS profiles are reported. The minimum surface roughness measured as 7.296x10-6m for TiO2 coated and cryo-treated HSS drill tool.


2015 ◽  
Vol 761 ◽  
pp. 262-266
Author(s):  
A. Siti Sarah ◽  
A.B. Mohd Hadzley ◽  
Raja Izamshah ◽  
Abu Abdullah

This paper aims to study the tool life of coated and uncoated high speed steel (HSS) when machining LM6 aluminium. The experiment was carried out in dry condition with spindle speed of 5000 rpm and 6000 rpm, and feed rate of 90 mm/min and 120 mm/min. Axial and radial depth of cut remain constant at 0.5 mm and 1.0 mm, respectively during the experiment. Throughout the experiments, coated HSS showed higher tool life as compared to uncoated HSS due to the coating layer of titanium aluminium nitride (TiAlN) provides protection from rapid wear during machining. For both cutting tools, the optimum cutting parameter was recorded at 5000 rpm spindle speed, 90 mm/min feed rate, 0.5 mm axial depth of cut and 1.0 mm radial depth of cut. Some evidence of built up edge (BUE) formation were observed at most of cutting tools, showing the dominant wear mechanisms appear to be adhesive wear.


Sign in / Sign up

Export Citation Format

Share Document