scholarly journals An Election Energy Threshold Based Multi-Hop Routing Protocol in a Grid-Clustered Wireless Sensor Network

Author(s):  
Funom Samuel Dadah ◽  
Ajayi Ore-Ofe ◽  
Aliyu D Usman ◽  
Y A Mshelia ◽  
M O Babatunde

Owing to the limited energy of sensor nodes (SNs) in a wireless sensor network (WSN), it is important to reduce and balance the energy consumption of the SNs in order to extend the WSN lifetime. Clustering mechanism is a highly efficient and effective mechanism for minimizing the amount of energy that SNs consume during the transmission of data packets. In this paper, an election energy threshold based multi-hop routing protocol (mEEMRP) is presented. In order to minimize energy consumption, this routing protocol uses grid clustering, where the network field is divided into grid clusters. SNs in each grid cluster select a cluster head (CH) based on a weight factor that takes the node location, node’s residual energy (RE) as well as the node’s distance from the base station into consideration. An energy efficient multi-hop routing algorithm is adopted during the transmission of data packets from the cluster heads (CHs) to the base station (BS). This multi-hop routing algorithm uses an election energy threshold value, T­nhCH that takes into consideration the RE of CHs as well as the distance between CHs. Simulation results show a 1.77% and 10.65% improvement in terms of network lifetime for two network field scenarios over Energy Efficient Multi-hop Routing Protocol (EEMRP).

Author(s):  
Sardjoeni Moedjiono ◽  
Aries Kusdaryono

Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, the authors propose power layer energy efficient routing protocol in wireless sensor network, named PLRP, which use power control and multi-hop routing protocol to control overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. The main idea of PLRP is the use of power control, which divide sensor node into group by base station uses layer of energy and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of PLRP compared to BCDCP and BIDRP based of hierarchical routing protocol. The simulation results show that PLRP achieve 25% and 30% of improvement on network lifetime.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Noor Zaman ◽  
Low Tang Jung ◽  
Muhammad Mehboob Yasin

Wireless Sensor Network (WSN) is known to be a highly resource constrained class of network where energy consumption is one of the prime concerns. In this research, a cross layer design methodology was adopted to design an energy efficient routing protocol entitled “Position Responsive Routing Protocol” (PRRP). PRRP is designed to minimize energy consumed in each node by (1) reducing the amount of time in which a sensor node is in an idle listening state and (2) reducing the average communication distance over the network. The performance of the proposed PRRP was critically evaluated in the context of network lifetime, throughput, and energy consumption of the network per individual basis and per data packet basis. The research results were analyzed and benchmarked against the well-known LEACH and CELRP protocols. The outcomes show a significant improvement in the WSN in terms of energy efficiency and the overall performance of WSN.


2013 ◽  
Vol 765-767 ◽  
pp. 980-984
Author(s):  
Xi Rong Bao ◽  
Jia Hua Xie ◽  
Shuang Long Li

This article focused on the energy limit property of Wireless Sensor Network, and proposed a residual energy based algorithm WN-LEACH, with the classic network mode of LEACH routing algorithm. The algorithm combines the proportion of residual energy in the total energy with the cumulative number of the normal nodes supported by the cluster heads as a cluster selection reference. In order to balance the energy consumption of each cluster-head, the algorithm took both the different positions of the base station and the initial energy of the network into consideration, and weighted the two factors to balance the energy consumption between transmitting the signals and data fusion. Simulation results show that the algorithm can promote the lifetime of the uneven energy network and does not impair the effects of the LEACH algorithm.


Wireless Sensor Network (WSN) is a huge collection of sensor nodes deployed without any predetermined infrastructure. They are powered by batteries and energy consumption is one of the major issues in WSN. Hence to prolong the lifetime of the networks, it is important to design the energy efficient optimized routing algorithm. In this paper, two hop forwarding scheme in AODV and Fuzzy Logic is proposed to find an optimal routing protocol and intermediate node acknowledgement is deducted by the use of Fuzzy rules. The parameters such as remaining energy, data packet transmission, packet received acknowledgement and number of rounds is given as input to the fuzzy system which gives an optimized routing decision. The efficacy of the proposed algorithm is evaluated using NS2 and compared with Fuzzy-based Energy-Aware Routing Mechanism (FEARM). The simulation results shows that the Fuzzy based AODV routing algorithm reduces the energy consumption, minimizes the routing response packets and improves the network life time compared to other similar routing protocols.


2021 ◽  
Author(s):  
R. Thiagarajan ◽  
V. Balajivijayan ◽  
R. Krishnamoorthy ◽  
I. Mohan

Abstract Underwater Wireless Sensor Network offers broad coverage of low data rate acoustic sensor networks, scalability and energy saving routing protocols. Moreover the major problem in underwater networks is energy consumption, which arises due to lower bandwidth and propagation delays. An underwater wireless sensor network frequently employs acoustic channel communications since radio signals not worked in deep water. The transmission of data packets and energy-efficient routing are constraints for the unique characteristics of underwater. The challenging issue is an efficient routing protocol for UWSNs. Routing protocols take advantage of localization sensor nodes. Many routing protocols have been proposed for sensing nodes through a localization process. Here we proposed a Novel vector-based forwarding and efficient depth-based routing protocol. The proposed novel vector-based forwarding provides robust, scalable, and energy-efficient routing. It easily transfers nodes from source to destination. It adopts the localized and distributed alternation that allows nodes to weigh transferring packets and decreases energy consumption and provides better optimal paths. Efficient depth-based routing is a stochastic model that will succeed in a high transmission loss of the acoustic channel. The simulation was used to compare the energy consumption, network lifetime in the form of depth-based routing, delivery ratio, and vector-based forwarding to prove the optimal route finding paths and data transmission propagation delay.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yue Zhao

Based on the principle of cluster wireless sensor network, this article introduces typical routing protocols in wireless sensors, and wireless sensor network protocol in detail analyzes their advantages and disadvantages and addresses their shortcomings. First, in the clustering network, a uniform clustering protocol with multiple hops in the circular network is proposed. The circular network is divided into rings of equal width, and clusters of equal size are set on different rings. Secondly, the ordinary nodes on each layer of the ring send the collected data to the auxiliary intelligent nodes in the cluster in a single-hop manner, and the auxiliary intelligent nodes located on the outer ring transfer the data to the auxiliary intelligent nodes located on the adjacent inner ring. Finally, on the basis of studying the clustering network protocol, this paper proposes a new clustering routing algorithm, a multihop adaptive clustering routing algorithm. The simulation results show that the algorithm can effectively extend the life of the network, save network energy consumption, and achieve network load balance. At the same time, the initial energy of the auxiliary intelligent node is set according to the energy consumption of the ordinary node and the relative distance between the auxiliary intelligent node and the base station on each layer of the ring. The theoretical and simulation results prove that, compared with the clustered network and auxiliary intelligent nodes, the clustered network can extend the life of the network.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2739 ◽  
Author(s):  
Muhammad Usman Younus ◽  
Saif ul Islam ◽  
Sung Won Kim

A wireless sensor network (WSN) has achieved significant importance in tracking different physical or environmental conditions using wireless sensor nodes. Such types of networks are used in various applications including smart cities, smart building, military target tracking and surveillance, natural disaster relief, and smart homes. However, the limited power capacity of sensor nodes is considered a major issue that hampers the performance of a WSN. A plethora of research has been conducted to reduce the energy consumption of sensor nodes in traditional WSN, however the limited functional capability of such networks is the main constraint in designing sophisticated and dynamic solutions. Given this, software defined networking (SDN) has revolutionized traditional networks by providing a programmable and flexible framework. Therefore, SDN concepts can be utilized in designing energy-efficient WSN solutions. In this paper, we exploit SDN capabilities to conserve energy consumption in a traditional WSN. To achieve this, an energy-aware multihop routing protocol (named EASDN) is proposed for software defined wireless sensor network (SDWSN). The proposed protocol is evaluated in a real environment. For this purpose, a test bed is developed using Raspberry Pi. The experimental results show that the proposed algorithm exhibits promising results in terms of network lifetime, average energy consumption, the packet delivery ratio, and average delay in comparison to an existing energy efficient routing protocol for SDWSN and a traditional source routing algorithm.


2013 ◽  
Vol 347-350 ◽  
pp. 3899-3902
Author(s):  
Yu Hua Liu ◽  
Zhen Rong Luo ◽  
Ke Xu ◽  
Cui Xu

This article poses an algorithm of the hierarchical topology in wireless sensor network based on shortest path tree algorithm to cover the shortage of LAC Routing Algorithm (LAC-T), which based on SPT(Shortest Path Tree). LAC-T algorithm elects cluster head by the remaining energy of nodes and the distance between node and base station. Meanwhile, it uses SPT to communicate among cluster heads in WSNs. The result of stimulation shows that LAC-T algorithm is not only easy to achieve, but could be better balance the energy consumption of each node, extend the lifespan of WSN (Wireless Sensor Network).


2022 ◽  
Vol 2022 ◽  
pp. 1-25
Author(s):  
Gang Liu ◽  
Zhaobin Liu ◽  
Victor S. Sheng ◽  
Liang Zhang ◽  
Yuanfeng Yang

In wireless sensor network (WSN), the energy of sensor nodes is limited. Designing efficient routing method for reducing energy consumption and extending the WSN’s lifetime is important. This paper proposes a novel energy-efficient, static scenario-oriented routing method of WSN based on edge computing named the NEER, in which WSN is divided into several areas according to the coverage of gateway (or base station), and each of the areas is regarded as an edge area network (EAN). Each edge area network is abstracted into a weighted undirected graph model combined with the residual energy of the sensor nodes. The base station (or a gateway) calculates the optimal energy consumption path for all sensor nodes within its coverage, and the nodes then perform data transmission through their suggested optimal paths. The proposed method is verified by the simulations, and the results show that the proposed method may consume about 37% less energy compared with the conventional WSN routing protocol and can also effectively extend the lifetime of WSN.


Author(s):  
Swedika Sharma

Wireless sensor network is the combination of sensor nodes where sensor nodes are distributed all over the network. There are some challenges that come into the wireless sensor network n context to energy efficiency, network lifetime, storage and battery backup. The most important feature of a routing protocol, in order to be efficient for WSNs, is the energy consumption and the extension of the network’s lifetime. In this paper, we have analyzed various routing techniques for WSN that increases the network lifetime and energy consumption.


Sign in / Sign up

Export Citation Format

Share Document