scholarly journals Analisis Pengaruh Metode Pembersihan Core, Pengeringan Core, dan Bonding Test Block pada Uji Flatwise Sandwich Carbon Epoxy dengan Glass Core

2020 ◽  
Vol 5 ◽  
pp. 307-312
Author(s):  
Kevin Krisna ◽  
Suardana N P G ◽  
Kencanawati C I P K
Keyword(s):  

Penggunaan komposit sebagai pengganti material logam dalam bidang rekayasa sudah semakin banyak digunakan salah satunya panel komposit dengan struktur sandwich. Core pada komposit sandwich memiliki peranan penting sebagai penopang dari skin yang digunakan. Pengujian ini bertujuan untuk mengetahui nilai kekuatan tarik flatwise dari variasi yang digunakan beserta pengaruhnya. Pengujian yang dilakukan adalah uji flatwise (ASTM C297). Hasil uji flatwise dengan nilai tertinggi ada pada variasi pembersihan menggunakan spray MEK, pengeringan menggunakan suhu ruang, dan bonding menggunakan tablepress dengan nilai rata-rata 5,67 MPa. Dari variasi yang digunakan, keseluruhannya memberikan pengaruh pada hasil pengujian.

2004 ◽  
Vol 123 (4) ◽  
pp. 341-356 ◽  
Author(s):  
Sudha Chakrapani ◽  
Timothy D. Bailey ◽  
Anthony Auerbach

We used single-channel recording and model-based kinetic analyses to quantify the effects of mutations in the extracellular domain (ECD) of the α-subunit of mouse muscle–type acetylcholine receptors (AChRs). The crystal structure of an acetylcholine binding protein (AChBP) suggests that the ECD is comprised of a β-sandwich core that is surrounded by loops. Here we focus on loops 2 and 7, which lie at the interface of the AChR extracellular and transmembrane domains. Side chain substitutions in these loops primarily affect channel gating by either decreasing or increasing the gating equilibrium constant. Many of the mutations to the β-core prevent the expression of functional AChRs, but of the mutants that did express almost all had wild-type behavior. Rate-equilibrium free energy relationship analyses reveal the presence of two contiguous, distinct synchronously-gating domains in the α-subunit ECD that move sequentially during the AChR gating reaction. The transmitter-binding site/loop 5 domain moves first (Φ = 0.93) and is followed by the loop 2/loop 7 domain (Φ = 0.80). These movements precede that of the extracellular linker (Φ = 0.69). We hypothesize that AChR gating occurs as the stepwise movements of such domains that link the low-to-high affinity conformational change in the TBS with the low-to-high conductance conformational change in the pore.


2021 ◽  
Vol 92 (8) ◽  
pp. A8-A8
Author(s):  
N Skandali ◽  
BJ Sahakian ◽  
TWR Robbins ◽  
V Voon

ObjectivesImpulsivity is a multifaceted construct that involves a tendency to act prematurely with little foresight, reflection or control. Waiting impulsivity is one aspect of action impulsivity and is commonly studied in animals using tasks such as the 5-choice serial reaction time task (5CSRTT).1 It is neurochemically distinct from motor response inhibition defined as the ability to restrain or cancel a pre-potent motor response and measured with no-go and stop-signal tasks respectively.1 Serotonin modulates waiting impulsivity as decreased serotonergic transmission promotes premature responding in the rodent 5CSRT and the human analogue 4CSRT task.2 Potential mechanisms contributing to waiting impulsivity include proactive or tonic inhibition, motivational processes and sensitivity to feedback and delay.3 Higher waiting impulsivity in response to high reward cues was previously associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula.4MethodsWe administered a clinically relevant dose of escitalopram (20mg) in healthy subjects in a double-blind, placebo-controlled, parallel-groups design study and assessed its effect on waiting impulsivity using the well-validated 4CSRT task. Compared to previous studies,2 4 we added another test block with increased potential gain to assess the interaction between premature responding and reward processing. We recruited sixty-six healthy participants who completed an extensive neuropsychological test battery assessing probabilistic reversal learning, set-shifting, response inhibition, emotional processing and waiting impulsivity. Sixty participants (N=60, 26 females, 34 males) completed the 4CSRT task with N=30 in the escitalopram and N=30 in the placebo group, due to technical errors and experienced side-effects for the remaining six participants. The results of the other cognitive tasks are reported separately.5ResultsEscitalopram increased premature responding in the high incentive condition of the 4CSRT task, p=.028, t= 2.275, this effect being driven by male participants, p=.019, t=2.532 (for females, p>.05). We further show that escitalopram increased premature responses after a premature response in the same block again in male participants only, p=.034, Mann-Whitney U= 61.500. We found no correlation between premature responding in the 4CSRT task, in any test block, and the Stop-signal reaction time, the primary measure of the stop-signal task completed by the same participants (reported in [5]).ConclusionsWe show that acute escitalopram increased premature responding in healthy male participants only in high incentive conditions potentially mediated potentially through an effect on increased incentive salience. We also show that acute escitalopram increased perseverative responding thus producing a maladaptive response strategy. We show no correlation between SSRT and premature responding in the same participants consistent with these two forms of impulsivity being neurochemically and anatomically distinct. We interpret our findings in the context of acute escitalopram decreasing serotonergic transmission in some brain areas through inhibitory actions on terminal 5-HT release mediated by auto-receptors on raphe 5-HT neurons analogous to the presumed transient reduction in 5-HT activity caused by ATD.5Our findings provide further insights in the relationship of premature responding and reward processing and our understanding of pathological impulse control behaviours.References Eagle DM, Bari A, Robbins TW. The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 2008;199(3):439456. Worbe Y, Savulich G, Voon V, Fernandez-Egea E, Robbins TW. Serotonin depletion induces waiting impulsivityon the human four-choice serial reaction time task: cross-species translational significance. Neuropsychopharmacology 2014;39(6):15191526. Voon V. Models of impulsivity with a focus on waiting impulsivity: translational potential for neuropsychiatric disorders. Current Addiction Reports 2014;1(4):281288. Mechelmans DJ, Strelchuk D, Doamayor N, Banca P, Robbins TW, Baek K, et al. Reward sensitivity and waiting impulsivity: shift towards reward valuation away from action control. International Journal of Neuropsychopharmacology 2017;20(12):971978. Skandali N, Rowe JB, Voon V, Deakin JB, Cardinal RN, Cormack F, et al. Dissociable effects of acute SSRI (escitalopram) on executive, learning and emotional functions in healthy humans. Neuropsychopharmacology 2018;43(13):26452651.


2000 ◽  
Author(s):  
Roger M. Crane ◽  
John W. Gillespie ◽  
Dirk Heider ◽  
Douglas A. Eckel ◽  
Colin P. Ratcliffe

Abstract This paper presents the results of an ongoing investigation into the use of broadband vibration data to monitor the structural integrity and health of an all-composite road bridge. Bridge 1-351 on Business Route 896 in Glasgow, Delaware, was replaced with one of the first state-owned all-composite bridges in the nation in the fall of 1998. The bridge consists of two E-Glass/vinyl ester sandwich core sections (13-ft × 32 ft) joined by a longitudinal joint in the traffic direction. Each sandwich core section consists of a 28-inch deep core and 0.4-0.7-inch thick facesheets. Vibration data were obtained from the upper and lower surfaces of the bridge using a mesh of 1050 test points. From the modal information and the visualization of the data, several aspects of the structural behavior of the bridge were obtained. These characteristics include the interactions between the bridge and abutments; the effectiveness of the longitudinal joint to couple the deck sections; the effectiveness of the core to couple the face sheets; and the structural integrity and dynamic consistency of the entire structure. Mode shapes and natural frequencies were determined and are correlated with theoretical calculations and vibration analyses conducted for this bridge. A novel algorithm using the vibration data is being developed that enables local perturbations sensitive to the state of the material (e.g. manufacturing defects, material degradation or service damage) to be detected and spatially located in the bridge. This technique has been successfully validated for locating damage in 1-D beam structures and is being extended to the 3-D sandwich configuration of the bridge. By coupling this damage detection algorithm with the more conventional modal technique, the quality assurance/quality control and health monitoring of large composite bridge can be obtained.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 6179-6184 ◽  
Author(s):  
DAE-YONG SEONG ◽  
CHANG GYUN JUNG ◽  
DONG-YOL YANG ◽  
DONG GYU AHN

Metallic sandwich plates are lightweight structural materials with load-bearing and multi-functional characteristics. Previous analytic studies have shown that the bendability of these plates increases as the thickness decreases. Due to difficulty in the manufacture of thin sandwich plates, dimpled cores (structures called egg-box cores) are employed as a sandwich core. High-precision dimpled cores are easily fabricated in a sectional forming process. The cores are then bonded with skin sheets by multi-point resistance welding. The bending characteristics of simply supported plates were observed by the defining measure, including the radius ratio of the small dimple, the thickness of a sandwich plate, and the pattern angle (0°/90°, 45°). Experimental results revealed that sandwich plates with a thickness of 2.2 mm and a pattern angle of 0°/90° showed good bendability as the punch stroke under a collapse load was longer than other cases. In addition, the gap between attachment points was found to be an important parameter for the improvement of the bendability. Finally, sandwich plates with dimpled cores were bent with a radius of curvature of 330 mm for the sheet thickness of 2.2 mm using an incremental bending apparatus.


2018 ◽  
Vol 32 (3) ◽  
pp. e3907 ◽  
Author(s):  
Ahmet Şenocak ◽  
Baybars Köksoy ◽  
Erhan Demirbaş ◽  
Mahmut Durmuş

2021 ◽  
Vol 8 ◽  
Author(s):  
Fusheng Niu ◽  
Yukun An ◽  
Jinxia Zhang ◽  
Wen Chen ◽  
Shengtao He

In this study, the influence of steel slag (SS) content on the strength of the cementitious materials was investigated. The quaternary active cementitious material (CaO-SiO2-Al2O3-SO3) was prepared using various proportions of steel slag (SS), granulated blast furnace slag (BFS), and desulfurized gypsum (DG). The mechanism of synergistic excitation hydration of the cementitious materials was examined using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). The strength of the mortar test block was initially increased and decreased later with the increase of the SS content. Mortar test block with 20% steel slag, 65% granulated blast furnace slag, and 15% desulfurized gypsum with 0.35 water-binder ratio showed the highest compressive strength of 57.3 MPa on 28 days. The free calcium oxide (f-CaO) in the SS reacted with water and produced calcium hydroxide (Ca(OH)2) which created an alkaline environment. Under the alkaline environment, the alkali-activated reaction occurred with BFS. In the early stage of hydration reaction, calcium silicate hydrate (C-S-H) gel and fibrous hydration product ettringite (AFt) crystals were formed, which provided early strength to the cementitious materials. As the hydration reaction progressed, the interlocked growth of C-S-H gel and AFt crystals continued and promoted the increase of the strength of the cementitious system.


2018 ◽  
Vol 926 ◽  
pp. 57-63
Author(s):  
Hyun Bum Park

This study aims to investigate numerically the damage area of a sandwich composite structure. In this work, the optimal sandwich core modeling method was proposed. This study applied two modeling methods to compare their analysis results for the structural analysis of the sandwich composite structure. Firstly, the modeling of sandwich core structure was performed with laminate modeling method. Secondly, the modeling of core structure was performed with core solid modeling method. The laminate modeling method was compared with the core solid modeling method. For the modeling, a carbon/epoxy composite structure was applied to the face sheet. And a nomex honeycomb core was applied to the core. Finally, comparing the result of modeling as actual shape with the one of virtually applying the thickness and modeling, it was examined that the former had three times more stress than the latter.


Sign in / Sign up

Export Citation Format

Share Document