BENDING BEHAVIOR OF SIMPLY SUPPOTED METALLIC SANDWICH PLATES WITH DIMPLED CORES

2008 ◽  
Vol 22 (31n32) ◽  
pp. 6179-6184 ◽  
Author(s):  
DAE-YONG SEONG ◽  
CHANG GYUN JUNG ◽  
DONG-YOL YANG ◽  
DONG GYU AHN

Metallic sandwich plates are lightweight structural materials with load-bearing and multi-functional characteristics. Previous analytic studies have shown that the bendability of these plates increases as the thickness decreases. Due to difficulty in the manufacture of thin sandwich plates, dimpled cores (structures called egg-box cores) are employed as a sandwich core. High-precision dimpled cores are easily fabricated in a sectional forming process. The cores are then bonded with skin sheets by multi-point resistance welding. The bending characteristics of simply supported plates were observed by the defining measure, including the radius ratio of the small dimple, the thickness of a sandwich plate, and the pattern angle (0°/90°, 45°). Experimental results revealed that sandwich plates with a thickness of 2.2 mm and a pattern angle of 0°/90° showed good bendability as the punch stroke under a collapse load was longer than other cases. In addition, the gap between attachment points was found to be an important parameter for the improvement of the bendability. Finally, sandwich plates with dimpled cores were bent with a radius of curvature of 330 mm for the sheet thickness of 2.2 mm using an incremental bending apparatus.

2021 ◽  
pp. 109963622199386
Author(s):  
Hessameddin Yaghoobi ◽  
Farid Taheri

An analytical investigation was carried out to assess the free vibration, buckling and deformation responses of simply-supported sandwich plates. The plates constructed with graphene-reinforced polymer composite (GRPC) face sheets and are subjected to mechanical and thermal loadings while being simply-supported or resting on different types of elastic foundation. The temperature-dependent material properties of the face sheets are estimated by employing the modified Halpin-Tsai micromechanical model. The governing differential equations of the system are established based on the refined shear deformation plate theory and solved analytically using the Navier method. The validation of the formulation is carried out through comparisons of the calculated natural frequencies, thermal buckling capacities and maximum deflections of the sandwich plates with those evaluated by the available solutions in the literature. Numerical case studies are considered to examine the influences of the core to face sheet thickness ratio, temperature variation, Winkler- and Pasternak-types foundation, as well as the volume fraction of graphene on the response of the plates. It will be explicitly demonstrated that the vibration, stability and deflection responses of the sandwich plates become significantly affected by the aforementioned parameters.


1960 ◽  
Vol 27 (3) ◽  
pp. 535-540 ◽  
Author(s):  
Yi-Yuan Yu

On the basis of the new flexural theory of elastic sandwich plates recently developed [1–3], the problem of general forced flexural vibration of sandwich plates in the plane-strain case is solved. The classical method of separation of variables combined with the Mindlin-Goodman procedure [4] for treating time-dependent boundary conditions is used. As an example, the results are made use of in solving the problem of a simply supported sandwich plate in plane strain with one of the two end sections prescribed a transverse deflection varying with time.


Author(s):  
S. Lukasiewicz ◽  
Z. Q. Xia

Abstract The paper studies the effect of the rapid change of temperature on the vibrations of simply supported sandwich plates. It has been taken into consideration that the properties of the facings and of the core of the sandwich plate materials change with the change of the temperature. The effects of the viscoelastic damping and geometrical nonlinearities on the behaviour of the plate have also been included. It was found that the rapid change of temperature affects the amplitude and frequency of the vibrations.


Author(s):  
Hamid R Talebi Amanieh ◽  
S Alireza S Roknizadeh ◽  
Arash Reza

In this paper, the vibrations of a sandwich plate with functionally graded magneto-electro-elastic (FG-MEE) face sheets and porous and viscoelastic core were investigated. Power-law rule modified by two types of porosity distributions was used to model the FG-MEE plates. The plate with even porosity distribution was considered as the FG-MEE-I model, while the one with uneven porosity distribution was labeled as the FG-MEE-II model. The normal and shear stresses were considered in the core layer, and the interlayer was modeled by the standard linear solid scheme. First-order shear deformation plate theory was used to derive the governing equation of the sandwich panel including the FG-MEE plate and viscoelastic core interaction. The governing equations were solved by the Navier method. A detailed parametric analysis was conducted to assess the effects of electric and magnetic fields, core-to-face sheet thickness ratio, and power-law index on the linear vibration characteristics of sandwich plates with functionally graded MEE face sheets. It is observed that for the FG-MEE-I model, an increase in the porosity coefficient led to a reduction in the frequency of the FG-MEE sandwich plate. On the contrary, for the FG-MEE-II model, an increment in the porosity coefficient enhanced the natural frequency.


2012 ◽  
Vol 28 (3) ◽  
pp. 439-452 ◽  
Author(s):  
A. M. Zenkour ◽  
M. Sobhy

AbstractThis paper deals with the static response of simply supported functionally graded material (FGM) viscoelastic sandwich plates subjected to transverse uniform loads. The FG sandwich plates are considered to be resting on Pasternak's elastic foundations. The sandwich plate is assumed to consist of a fully elastic core sandwiched by elastic-viscoelastic FGM layers. Material properties are graded according to a power-law variation from the interfaces to the faces of the plate. The equilibrium equations of the FG sandwich plate are given based on a trigonometric shear deformation plate theory. Using Illyushin's method, the governing equations of the viscoelastic sandwich plate can be solved. Parametric study on the bending analysis of FG sandwich plates is being investigated. These parameters include (i) power-law index, (ii) plate aspect ratio, (iii) side-to-thickness ratio, (iv) loading type, (v) foundation stiffnesses, and (vi) time parameter.


Author(s):  
Wei Zhang ◽  
Qi-liang Wu

In this paper, an extended high-dimensional Melnikov method is used to investigate global and chaotic dynamics of a simply supported 3D-kagome truss core sandwich plate subjected to the transverse and the in-plane excitations. Based on the motion equation derived by Zhang and the method of multiple scales, the averaged equation is obtained for the case of principal parametric resonance and 1:2 sub-harmonic resonance for the first-order mode and primary resonance for the second-order mode. From the averaged equation obtained, the system is simplified to a three order standard form with a double zero and a pair of pure imaginary eigenvalues by using the theory of normal form. Then, the extended Melnikov method is utilized to investigate the Shilnikov-type multi-pulse heteroclinic bifurcations and existence of chaos. The analysis of the extended Melnikov method demonstrates that there exist the Shilnikov-type multi-pulse heteroclinic bifurcations and chaos in the four-dimensional non-autonomous nonlinear system. Finally, the results of numerical simulations also show that for the nonlinear system of simply supported 3D-kagome truss core sandwich plate with the transverse and the in-plane excitations, the Shilnikov-type multi-pulse motion of chaos can happen and further verify the result of theoretical analysis.


Author(s):  
Hamid Reza Talebi Amanieh ◽  
Seyed Alireza Seyed Roknizadeh ◽  
Arash Reza

In this paper, the nonlinear vibrational behavior of a sandwich plate with embedded viscoelastic material is studied through the use of constitutive equations with fractional derivatives. The studied sandwich structure is consisted of a viscoelastic core that is located between the faces of functionally graded magneto-electro-elastic (FG-MEE). In order to determine the frequency-dependent feature of the viscoelastic layer, four-parameter fractional derivative model is utilized. The material properties of FG-MEE face sheets have been distributed considering the power law scheme along the thickness. In addition, for derivation of the governing equations on the sandwich plate, first-order shear deformation plate theory along with von Karman-type of kinematic nonlinearity are implemented. The derived partial differential equations (PDEs) have been transformed to the ordinary differential equations (ODEs) through the Galerkin method. After that, the nonlinear vibration equations for the sandwich plate have been solved by multiple time scale perturbation technique. Moreover, for evaluating the effect of different parameters such as electric and magnetic fields, fractional order, the ratio of the core-to-face thickness and the power low index on the nonlinear vibration characteristics of sandwich plates with FG-MEE face sheets, the parametric analysis has been performed. The obtained results revealed the enhanced nonlinear natural frequency through an increment in the fractional order. Furthermore, the prominent influence of fractional order on the nonlinear frequency of sandwich plate was declared at the negative electric potential and positive magnetic potential.


2016 ◽  
Vol 5 (1) ◽  
pp. 232-249
Author(s):  
Riccardo Vescovini ◽  
Lorenzo Dozio

Abstract The analysis of monolithic and sandwich plates is illustrated for those cases where the boundary conditions are not uniform along the thickness direction, and run at a given position along the thickness direction. For instance, a sandwich plate constrained at the bottom or top face can be considered. The approach relies upon a sublaminate formulation,which is applied here in the context of a Ritz-based approach. Due to the possibility of dividing the structure into smaller portions, viz. the sublaminates, the constraints can be applied at any given location, providing a high degree of flexibility in modeling the boundary conditions. Penalty functions and Lagrange multipliers are introduced for this scope. Results are presented for free-vibration and bending problems. The close matching with highly refined finite element analyses reveals the accuracy of the proposed formulation in determining the vibration frequencies, as well as the internal stress distribution. Reference results are provided for future benchmarking purposes.


2018 ◽  
Author(s):  
Yi Shi ◽  
Jian Cao ◽  
Kornel F. Ehmann

Compared to the conventional single-point incremental forming (SPIF) processes, water jet incremental micro-forming (WJIMF) utilizes a high-speed and high-pressure water jet as a tool instead of a rigid round-tipped tool to fabricate thin shell micro objects. Thin foils were incrementally formed with micro-scale water jets on a specially designed testbed. In this paper, the effects on the water jet incremental micro-forming process with respect to several key process parameters, including water jet pressure, relative water jet diameter, sheet thickness, and feed rate, were experimentally studied using stainless steel foils. Experimental results indicate that feature geometry, especially depth, can be controlled by adjusting the processes parameters. The presented results and conclusions provide a foundation for future modeling work and the selection of process parameters to achieve high quality thin shell micro products.


Sign in / Sign up

Export Citation Format

Share Document