Human Sex Differences in Emotion Prediction: Evidence from Event-Related Potentials

2018 ◽  
Vol 46 (6) ◽  
pp. 925-934 ◽  
Author(s):  
Guangming Ran

Women and men process emotion stimuli in different ways. Few of the previous researchers who have examined how emotion recognition differs between the sexes, looked at sex differences in emotion prediction. Thus, I investigated women's and men's perceptions of emotional faces in predictable and unpredictable conditions. Results showed that behaviorally, women's response accuracy was higher than men's. In contrast, neurally, men had greater P1 amplitudes for happy faces compared with angry faces in right hemisphere electrodes, suggesting that men have a perceptual bias toward happy faces. Further, women exhibited larger N170 amplitudes for predictable versus unpredictable angry faces in right hemisphere electrodes. This may reflect enhanced sensitivity to detecting anger. Finally, there was a significant positive correlation between behavioral and N170 predictability effects. This result may indicate that emotion prediction enhances neural responses while improving recognition efficiency at the behavioral level. In this respect, the electrophysiological results and behavioral data were consistent.

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Jona Sassenhagen ◽  
Ryan Blything ◽  
Elena V. M. Lieven ◽  
Ben Ambridge

How are verb-argument structure preferences acquired? Children typically receive very little negative evidence, raising the question of how they come to understand the restrictions on grammatical constructions. Statistical learning theories propose stochastic patterns in the input contain sufficient clues. For example, if a verb is very common, but never observed in transitive constructions, this would indicate that transitive usage of that verb is illegal. Ambridge et al. (2008) have shown that in offline grammaticality judgements of intransitive verbs used in transitive constructions, low-frequency verbs elicit higher acceptability ratings than high-frequency verbs, as predicted if relative frequency is a cue during statistical learning. Here, we investigate if the same pattern also emerges in on-line processing of English sentences. EEG was recorded while healthy adults listened to sentences featuring transitive uses of semantically matched verb pairs of differing frequencies. We replicate the finding of higher acceptabilities of transitive uses of low- vs. high-frequency intransitive verbs. Event-Related Potentials indicate a similar result: early electrophysiological signals distinguish between misuse of high- vs low-frequency verbs. This indicates online processing shows a similar sensitivity to frequency as off-line judgements, consistent with a parser that reflects an original acquisition of grammatical constructions via statistical cues. However, the nature of the observed neural responses was not of the expected, or an easily interpretable, form, motivating further work into neural correlates of online processing of syntactic constructions.


2002 ◽  
Vol 13 (01) ◽  
pp. 001-013 ◽  
Author(s):  
James Jerger ◽  
Rebecca Estes

We studied auditory evoked responses to the apparent movement of a burst of noise in the horizontal plane. Event-related potentials (ERPs) were measured in three groups of participants: children in the age range from 9 to 12 years, young adults in the age range from 18 to 34 years, and seniors in the age range from 65 to 80 years. The topographic distribution of grand-averaged ERP activity was substantially greater over the right hemisphere in children and seniors but slightly greater over the left hemisphere in young adults. This finding may be related to age-related differences in the extent to which judgments of sound movement are based on displacement versus velocity information.


Author(s):  
Michela Balconi

Neuropsychological studies have underlined the significant presence of distinct brain correlates deputed to analyze facial expression of emotion. It was observed that some cerebral circuits were considered as specific for emotional face comprehension as a function of conscious vs. unconscious processing of emotional information. Moreover, the emotional content of faces (i.e. positive vs. negative; more or less arousing) may have an effect in activating specific cortical networks. Between the others, recent studies have explained the contribution of hemispheres in comprehending face, as a function of type of emotions (mainly related to the distinction positive vs. negative) and of specific tasks (comprehending vs. producing facial expressions). Specifically, ERPs (event-related potentials) analysis overview is proposed in order to comprehend how face may be processed by an observer and how he can make face a meaningful construct even in absence of awareness. Finally, brain oscillations is considered in order to explain the synchronization of neural populations in response to emotional faces when a conscious vs. unconscious processing is activated.


2020 ◽  
Author(s):  
Chenglong Cao ◽  
Jian Song ◽  
Binbin Liu ◽  
Jianren Yue ◽  
Yuzhao Lu ◽  
...  

Abstract Background: Cognitive impairments have been reported in patients with pituitary adenoma; however, there is a lack of knowledge of investigating the emotional stimuli processing in pituitary patients. Thus, we aimed to investigate whether there is emotional processing dysfunction in pituitary patients by recording and analyzing the late positive potential (LPP) elicited by affective stimuli.Methods: Evaluation of emotional stimuli processing by LPP Event related potentials (ERPs) was carried out through central- parietal electrode sites (C3, Cz, C4, P3, Pz, P4) on the head of the patients and healthy controls (HCs).Results: In the negative stimuli, the amplitude of LPP was 2.435 ± 0.419μV for HCs and 0.656 ± 0.427μV for patient group respectively ( p = 0.005). In the positive stimuli, the elicited electric potential 1.450 ± 0.316μV for HCs and 0.495 ± 0.322μV for patient group respectively ( p = 0.040). Moreover, the most obvious difference of LPP amplitude between the two groups existed in the right parietal region. On the right hemisphere (at the P4 site), the elicited electric potential was 1.993 ± 0.299μV for HCs and 0.269 ± 0.305μV for patient group respectively( p = 0.001).Conclusion: There are functional dysfunction of emotional stimuli processing in pituitary adenoma patients. Our research provides the electrophysiological evidence for the presence of cognitive dysfunction which need to be intervened in the pituitary adenoma patients.


2020 ◽  
Vol 8 (3-4) ◽  
pp. 254-278
Author(s):  
Lisa V. Eberhardt ◽  
Ferdinand Pittino ◽  
Anna Scheins ◽  
Anke Huckauf ◽  
Markus Kiefer ◽  
...  

Abstract Emotional stimuli like emotional faces have been frequently shown to be temporally overestimated compared to neutral ones. This effect has been commonly explained by induced arousal caused by emotional processing leading to the acceleration of an inner-clock-like pacemaker. However, there are some studies reporting contradictory effects and others point to relevant moderating variables. Given this controversy, we aimed at investigating the processes underlying the temporal overestimation of emotional faces by combining behavioral and electrophysiological correlates in a temporal bisection task. We assessed duration estimation of angry and neutral faces using anchor durations of 400 ms and 1600 ms while recording event-related potentials. Subjective ratings and the early posterior negativity confirmed encoding and processing of stimuli’s emotionality. However, temporal ratings did not differ between angry and neutral faces. In line with this behavioral result, the Contingent Negative Variation (CNV), an electrophysiological index of temporal accumulation, was not modulated by the faces’ emotionality. Duration estimates, i.e., short or long responses toward stimuli of ambiguous durations of 1000 ms, were nevertheless associated with a differential CNV amplitude. Interestingly, CNV modulation was already observed at 600–700 ms after stimulus onset, i.e., long before stimulus offset. The results are discussed in light of the information-processing model of time perception as well as regarding possible factors of the experimental setup moderating temporal overestimation of emotional stimuli. In sum, combining behavioral and electrophysiological measures seems promising to more clearly understand the complex processes leading to the illusion of temporal lengthening of emotional faces.


2019 ◽  
pp. 1-9 ◽  
Author(s):  
Victor J. Pokorny ◽  
Timothy J. Lano ◽  
Michael-Paul Schallmo ◽  
Cheryl A. Olman ◽  
Scott R. Sponheim

Abstract Background Accurate perception of visual contours is essential for seeing and differentiating objects in the environment. Both the ability to detect visual contours and the influence of perceptual context created by surrounding stimuli are diminished in people with schizophrenia (SCZ). The central aim of the present study was to better understand the biological underpinnings of impaired contour integration and weakened effects of perceptual context. Additionally, we sought to determine whether visual perceptual abnormalities reflect genetic factors in SCZ and are present in other severe mental disorders. Methods We examined behavioral data and event-related potentials (ERPs) collected during the perception of simple linear contours embedded in similar background stimuli in 27 patients with SCZ, 23 patients with bipolar disorder (BP), 23 first-degree relatives of SCZ, and 37 controls. Results SCZ exhibited impaired visual contour detection while BP exhibited intermediate performance. The orientation of neighboring stimuli (i.e. flankers) relative to the contour modulated perception across all groups, but SCZ exhibited weakened suppression by the perceptual context created by flankers. Late visual (occipital P2) and cognitive (centroparietal P3) neural responses showed group differences and flanker orientation effects, unlike earlier ERPs (occipital P1 and N1). Moreover, behavioral effects of flanker context on contour perception were correlated with modulation in P2 & P3 amplitudes. Conclusion In addition to replicating and extending findings of abnormal contour integration and visual context modulation in SCZ, we provide novel evidence that the abnormal use of perceptual context is associated with higher-order sensory and cognitive processes.


2020 ◽  
Vol 8 (5) ◽  
pp. 872-889 ◽  
Author(s):  
Paige Ethridge ◽  
Nida Ali ◽  
Sarah E. Racine ◽  
Jens C. Pruessner ◽  
Anna Weinberg

Both abnormal stress and reward responsivity are consistently linked to multiple forms of psychopathology; however, the nature of the associations between stress and reward sensitivity remains poorly understood. In the present study, we examined associations between the hypothalamic-pituitary-adrenal-axis stress response and event-related potentials sensitive to the receipt of reward-related feedback in a pre–post experimental paradigm. Neural responses were recorded while male participants completed a simple monetary-reward guessing task before and after the Montreal Imaging Stress Task. Results demonstrated that acute psychosocial stress significantly reduced the magnitude of neural responses to feedback in the reward-sensitive delta-frequency band but not the loss-sensitive theta-frequency band. In addition, a larger delta-frequency response to rewards at baseline predicted reduced overall cortisol response in the stress condition. These findings suggest, therefore, that neural reward circuitry may be associated with both risk for and resilience to stress-related psychopathology.


Author(s):  
Takahiro Yamanoi ◽  
◽  
Yoshinori Tanaka ◽  
Mika Otsuki ◽  
Shin-ichi Ohnishi ◽  
...  

The authors measure electroencephalograms (EEGs) from a subject looking at line drawings of body parts and recalling their names silently. The equivalent current dipole source localization (ECDL) method is applied to the event related potentials (ERPs): summed EEGs. As the dominant language area of the subject is considered to be in the right hemisphere in the previous research study, ECDs are localized to the right middle temporal gyrus: the angular gyrus. Then ECDs are localized to the right fusiform gyrus, the right middle temporal pole (TEP), and the right inferior temporal white matter (TWM). ECDs are located in the ventral pathway. The areas are related to the integrated process of visual recognition of pictures and the recalling of words. Some of these areas are also related to image recognition and word generation.


2006 ◽  
Vol 18 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Joel S. Snyder ◽  
Claude Alain ◽  
Terence W. Picton

A general assumption underlying auditory scene analysis is that the initial grouping of acoustic elements is independent of attention. The effects of attention on auditory stream segregation were investigated by recording event-related potentials (ERPs) while participants either attended to sound stimuli and indicated whether they heard one or two streams or watched a muted movie. The stimuli were pure-tone ABA-patterns that repeated for 10.8 sec with a stimulus onset asynchrony between A and B tones of 100 msec in which the A tone was fixed at 500 Hz, the B tone could be 500, 625, 750, or 1000 Hz, and was a silence. In both listening conditions, an enhancement of the auditory-evoked response (P1-N1-P2 and N1c) to the B tone varied with f and correlated with perception of streaming. The ERP from 150 to 250 msec after the beginning of the repeating ABA-patterns became more positive during the course of the trial and was diminished when participants ignored the tones, consistent with behavioral studies indicating that streaming takes several seconds to build up. The N1c enhancement and the buildup over time were larger at right than left temporal electrodes, suggesting a right-hemisphere dominance for stream segregation. Sources in Heschl's gyrus accounted for the ERP modulations related to f-based segregation and buildup. These findings provide evidence for two cortical mechanisms of streaming: automatic segregation of sounds and attention-dependent buildup process that integrates successive tones within streams over several seconds.


1997 ◽  
Vol 40 (6) ◽  
pp. 1334-1340 ◽  
Author(s):  
Michael D. Morgan ◽  
Jerry L. Cranford ◽  
Kenneth Burk

This study investigated possible differences between adult stutterers and nonstutterers in the P300 event-related potential. Responses to tonal stimuli were recorded from electrodes placed over the left (C3) and right (C4) hemispheres. The two groups exhibited different patterns of interhemispheric activity. Although all 8 participants in the fluent group exhibited P300s that were higher in amplitude over the right hemisphere, 5 of the 8 disfluent participants had higher amplitude activity over the left hemisphere. These results provide evidence that stutterers and nonstutterers may exhibit differences between hemispheres in the processing of some types of nonlinguistic (tonal) stimuli.


Sign in / Sign up

Export Citation Format

Share Document