scholarly journals Prediction of the windage heating effect in steam turbine labyrinth seals

2017 ◽  
Vol 1 ◽  
pp. ETJLRM
Author(s):  
Simon Hecker ◽  
Andreas Penkner ◽  
Jens Pfeiffer ◽  
Stefan Glos ◽  
Christian Musch

Abstract Today’s steam turbine power plants are designed for highest steam inlet temperatures up to 620°C to maximize thermal efficiency. This leads to elevated thermal stresses in rotors and casings of the turbines. Hence, temperature distributions of the components have to be predicted with highest accuracy at various load points in the design process to assure reliable operation and long life time. This paper describes the windage heating effect in full labyrinth seals used in steam turbines. An analytical approach is presented, based on CFD simulations, to predict the resulting steam temperatures. A broad application range from very low to highest Reynolds numbers representing different turbine operation conditions from partial to full load is addressed. The effect of varying Reynolds number on the flow friction behaviour is captured by using an analogy to the flow over a flat plate. Additionally, the impact of different labyrinth geometries on the friction coefficient is evaluated with the help of more than 100 CFD simulations. A meta-model is derived from the numerical results. Finally, the analytical windage heating model is validated against measurements. The presented approach is a fast and reliable method to find the best performing labyrinth geometries with lowest windage effects, i.e. lowest steam temperatures.

Author(s):  
Yasuhiro Yoshida ◽  
Kazunori Yamanaka ◽  
Atsushi Yamashita ◽  
Norihiro Iyanaga ◽  
Takuya Yoshida

In the fast start-up for combined cycle power plants (CCPP), the thermal stresses of the steam turbine rotor are generally controlled by the steam temperatures or flow rates by using gas turbines (GTs), steam turbines, and desuperheaters to avoid exceeding the thermal stress limits. However, this thermal stress sensitivity to steam temperatures and flow rates depends on the start-up sequence due to the relatively large time constants of the heat transfer response in the plant components. In this paper, a coordinated control method of gas turbines and steam turbine is proposed for thermal stress control, which takes into account the large time constants of the heat transfer response. The start-up processes are simulated in order to assess the effect of the coordinated control method. The simulation results of the plant start-ups after several different cool-down times show that the thermal stresses are stably controlled without exceeding the limits. In addition, the steam turbine start-up times are reduced by 22–28% compared with those of the cases where only steam turbine control is applied.


Author(s):  
Dieter Bohn ◽  
Christian Betcher ◽  
Karsten Kusterer ◽  
Kristof Weidtmann

Abstract As a result of an ever-increasing share of volatile renewable energies on the world wide power generation, conventional power plants face high technical challenges in terms of operational flexibility. Consequently, the number of startups and shutdowns grows, causing high thermal stresses in the thick-walled components and thus reduces lifetime and increases product costs. To fulfill the lifetime requirements, an accurate prediction of the metal temperature distribution inside these components is crucial. The objective of this paper is to understand the predominant basic heat transfer mechanisms during an IP steam turbine startup. Convective heat transport is described by means of HTC's as a function of dimensionless parameters, considering predominant flow structures. Based on steady-state and transient CHT- simulations the HTC's are derived during startup and compared to correlations from the literature. The simulations outline that the local HTC generally increases with increasing axial and circumferential Reynolds' number and is mostly influenced by vortex systems such as passage and horseshoe vortices. The HTC's at the turbine stage surfaces can be modeled with a high accuracy using a linear relation with respect to the total Reynolds' number. The comparison illustrates that the correlations underestimate the convective heat transfer by approx. 40% on average. Results show that special correlation-based approaches from the literature are a particularly efficient procedure to predict the heat transfer within steam turbines. in the design process. Overall, the computational effort can be significantly reduced by applying analytical correlations while maintaining a satisfactory accuracy.


Author(s):  
N. Lückemeyer ◽  
H. Kirchner ◽  
H. Almstedt

With global warming being one of mankind’s greatest challenges together with, an increasing demand for electricity world-wide, and studies showing that fossil resources like coal and gas will remain a major source for electricity for the next couple of decades, research into the development of highest efficiency fossil power plants has become a top priority. Calculations for coal fired power plants have shown that by increasing the live steam parameters to 700°C and 350bar CO2 emissions can be reduced by as much as 8% compared to the current state-of-the-art. This is equivalent to a reduction of 24% compared to the current steam power plant fleet within the European Union. To achieve the desired operating hours at this temperature the application of nickel (Ni) based alloys for the main steam turbine components such as rotors, inner casings and valves is necessary. The use of Nickel base alloys for selected gas turbine components is common practice. But with steam turbine rotors being solid, 1000mm in diameter and casings with wall thicknesses >100mm the gas turbine application range and experience for nickel base alloys are well exceeded. This paper discusses a basic product design concept in order to identify the core challenges in developing Ni based steam turbine components. These include casting, forging, non-destructive testing and welding. The material property requirements for such components (steam-oxidation resistance, creep and fatigue resistance) are also identified. Based on these challenges and requirements a number of research projects have been carried out in Europe which have selected Alloy617 as being most suitable for forged components and Alloy625 for cast components. Further projects are currently being initiated. The last major step in steam turbine development for high temperatures was to switch from low alloyed chromium (Cr) steels to high alloyed Cr steels. The identified challenges in using Nickel base alloys for large steam turbines are compared to this last material switch to characterize the level of complexity and difficulty of the development of the 700°C steam turbine technology.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Dennis Toebben ◽  
Adrian Hellmig ◽  
Piotr Luczynski ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
...  

Due to the growing share of volatile renewable power generation, conventional power plants with a high flexibility are required. This leads to high thermal stresses inside the heavy components which reduces the lifetime. To improve the ability for fast start-ups, information about the metal temperature inside the rotor and the casing are crucial. Thus, an efficient calculation approach is required which enables the prediction of the temperature distribution in a whole multistage steam turbine. Considerable improvements of the computing power and numerical simulation tools today allow detailed investigations of the heat transfer and the flow phenomena by conjugate-heat-transfer (CHT) simulations. However, these simulations are still restricted to smaller geometries mostly by the number of elements. This leads to coarser numerical meshes for larger geometries, and thus, to a reduced accuracy. A highly accurate three-dimensional-CHT simulation of a whole multistage steam turbine can only be conducted with huge computational expense. Therefore, a simplified calculation approach is required. Heat transfer correlations are a commonly used tool for the calculation of the heat exchange between fluid and solid. Heat transfer correlations for steam turbines have been developed in a multitude of investigations. However, these investigations were based on design or to some extent on part-load operations with steam as the working fluid. The present paper deals with the theoretical investigation of steam turbine warm-keeping operation with hot air. This operation is totally different from the conventional operation conditions, due to a different working fluid with low mass flow rates and a slow rotation. Based on quasi-steady transient multistage CHT simulations, an analytical heat transfer correlation has been developed, since the commonly known calculation approaches from the literature are not suitable for this case. The presented heat transfer correlations describe the convective heat transfer separately at vane and blade as well as the seal surfaces. The correlations are based on a CHT model of three repetitive steam turbine stages. The simulations show a similar behavior of the Nusselt-number in consecutive stages. Hence, the developed area related heat transfer correlations are independent of the position of the stage. Finally, the correlations are implemented into a solid body finite element model and compared to the fluid-dynamic simulations.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Emrah Biyik ◽  
Fernando J. D'Amato ◽  
Arun Subramaniyan ◽  
Changjie Sun

Finite element models (FEMs) are extensively used in the design optimization of utility scale steam turbines. As an example, by simulating multiple startup scenarios of steam power plants, engineers can obtain turbine designs that minimize material utilization, and at the same time, avoid the damaging effects of large thermal stresses or rubs between rotating and stationary parts. Unfortunately, FEMs are computationally expensive and only a limited amount of simulations can be afforded to get the final design. For this reason, numerous model reduction techniques have been developed to reduce the size of the original model without a significant loss of accuracy. When the models are nonlinear, as is the case for steam turbine FEMs, model reduction techniques are relatively scarce and their effectiveness becomes application dependent. Although there is an abundant literature on model reduction for nonlinear systems, many of these techniques become impractical when applied to a realistic industrial problem. This paper focuses on a class of nonlinear FEM characteristic of thermo-elastic problems with large temperature excursions. A brief overview of popular model reduction techniques is presented along with a detailed description of the computational challenges faced when applying them to a realistic problem. The main contribution of this work is a set of modifications to existing methods to increase their computational efficiency. The methodology is demonstrated on a steam turbine model, achieving a model size reduction by four orders of magnitude with only 4% loss of accuracy with respect to the full order FEMs.


Author(s):  
Dennis Toebben ◽  
Adrian Hellmig ◽  
Piotr Luczynski ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
...  

Due to the growing share of volatile renewable power generation, conventional power plants with a high flexibility are required. This leads to high thermal stresses inside the heavy components which reduces the lifetime. To improve the ability for fast start-ups, information about the metal temperature inside the rotor and the casing are crucial. Thus, an efficient calculation approach is required which enables the prediction of the temperature distribution in a whole multistage steam turbine. Considerable improvements of the computing power and numerical simulation tools today allow detailed investigations of the heat transfer and the flow phenomena by Conjugate-Heat-Transfer (CHT) simulations. However, these simulations are still restricted to smaller geometries mostly by the number of elements. This leads to coarser numerical meshes for larger geometries and thus, to a reduced accuracy. A highly accurate 3D-CHT simulation of a whole multistage steam turbine can only be conducted with huge computational expense. Therefore, a simplified calculation approach is required. Heat transfer correlations are a commonly used tool for the calculation of the heat exchange between fluid and solid. Heat transfer correlations for steam turbines have been developed in a multitude of investigations. However, these investigations were based on design or to some extent on part-load operations with steam as the working fluid. The present paper deals with the theoretical investigation of steam turbine warm-keeping operation with hot air. This operation is totally different from the conventional operation conditions, due to the different working fluid with low mass flow rates and a slow rotation. Based on quasi-steady transient multistage CHT simulations, an analytical heat transfer correlation has been developed, since, the commonly known calculation approaches from literature are not suitable for this case. The presented heat transfer correlations describe the convective heat transfer separately at vane and blade as well as the seal surfaces. The correlations are based on a CHT model of three repetitive steam turbine stages. The simulations show a similar behavior of the Nusselt-number in consecutive stages. Hence, the developed area related heat transfer correlations are independent of the position of the stage. Finally, the correlations are implemented into a solid body Finite-Element model and compared to the fluid-dynamic simulations.


Author(s):  
Peter Stein ◽  
Gabriel Marinescu ◽  
Dominik Born ◽  
Michael Lerch

As part of the renewable energies and because of their low environmental impact, solar thermal power plants enjoy a wide acceptance in the public. In the past years, several projects have been launched to install plants even with a total power output level beyond 200 MW, which require large size steam turbines. Steam turbines of solar power plants face much more start-ups and shutdowns, compared to typical fossil type baseload machines. In order to provide the required lifetime of steam turbine components, i.e. in high- and intermediate-pressure modules, accurate calculation methods of temperatures and heat transfer coefficients are essential for natural cooling and start-up assessment. Beside rotors, also turbine inner casings face high thermal stresses, especially close to the inlet spiral. At these conditions high thermal stress occurs, which prevents the part to meet the technical requirements. The paper below gives a solution how to avoid this high stress and a calculation method for inner casings. A heat-shield introduced around the inlet spiral separates the active cooling domain of the turbine cavity relative to a narrow domain around the inlet spiral, where the fluid velocity is negligible. A method on how to simplify heat transfer calculations below the heat shield region is investigated and discussed. The results are verified vs. a CFD based sensitivity analysis. Finally a reduction of the peak stress on the configuration with heat-shield is demonstrated relative to the peak stress calculated without heat-shield.


Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Author(s):  
Andreas Pickard

At the start of this new century, environmental regulations and free-market economics are becoming the key drivers for the electricity generating industry. Advances in Gas Turbine (GT) technology, allied with integration and refinement of Heat Recovery Steam Generators (HRSG) and Steam Turbine (ST) plant, have made Combined Cycle installations the most efficient of the new power station types. This potential can also be realized, to equal effect, by adding GT’s and HRSG’s to existing conventional steam power plants in a so-called ‘repowering’ process. This paper presents the economical and environmental considerations of retrofitting the steam turbine within repowering schemes. Changing the thermal cycle parameters of the plant, for example by deletion of the feed heating steambleeds or by modified live and reheat steam conditions to suit the combined cycle process, can result in off-design operation of the existing steam turbine. Retrofitting the steam turbine to match the combined cycle unit can significantly increase the overall cycle efficiency compared to repowering without the ST upgrade. The paper illustrates that repowering, including ST retrofitting, when considered as a whole at the project planning stage, has the potential for greater gain by allowing proper plant optimization. Much of the repowering in the past has been carried out without due regard to the benefits of re-matching the steam turbine. Retrospective ST upgrade of such cases can still give benefit to the plant owner, especially when it is realized that most repowering to date has retained an unmodified steam turbine (that first went into operation some decades before). The old equipment will have suffered deterioration due to aging and the steam path will be to an archaic design of poor efficiency. Retrofitting older generation plant with modern leading-edge steam-path technology has the potential for realizing those substantial advances made over the last 20 to 30 years. Some examples, given in the paper, of successfully retrofitted steam turbines applied in repowered plants will show, by specific solution, the optimization of the economics and benefit to the environment of the converted plant as a whole.


Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Simon Hecker ◽  
Peter Dumstorff ◽  
Henning Almstedt ◽  
...  

The demand for energy is increasingly covered through renewable energy sources. As a consequence, conventional power plants need to respond to power fluctuations in the grid much more frequently than in the past. Additionally, steam turbine components are expected to deal with high loads due to this new kind of energy management. Changes in steam temperature caused by rapid load changes or fast starts lead to high levels of thermal stress in the turbine components. Therefore, todays energy market requires highly efficient power plants which can be operated under flexible conditions. In order to meet the current and future market requirements, turbine components are optimized with respect to multi-dimensional target functions. The development of steam turbine components is a complex process involving different engineering disciplines and time-consuming calculations. Currently, optimization is used most frequently for subtasks within the individual discipline. For a holistic approach, highly efficient calculation methods, which are able to deal with high dimensional and multidisciplinary systems, are needed. One approach to solve this problem is the usage of surrogate models using mathematical methods e.g. polynomial regression or the more sophisticated Kriging. With proper training, these methods can deliver results which are nearly as accurate as the full model calculations themselves in a fraction of time. Surrogate models have to face different requirements: the underlying outputs can be, for example, highly non-linear, noisy or discontinuous. In addition, the surrogate models need to be constructed out of a large number of variables, where often only a few parameters are important. In order to achieve good prognosis quality only the most important parameters should be used to create the surrogate models. Unimportant parameters do not improve the prognosis quality but generate additional noise to the approximation result. Another challenge is to achieve good results with as little design information as possible. This is important because in practice the necessary information is usually only obtained by very time-consuming simulations. This paper presents an efficient optimization procedure using a self-developed hybrid surrogate model consisting of moving least squares and anisotropic Kriging. With its maximized prognosis quality, it is capable of handling the challenges mentioned above. This enables time-efficient optimization. Additionally, a preceding sensitivity analysis identifies the most important parameters regarding the objectives. This leads to a fast convergence of the optimization and a more accurate surrogate model. An example of this method is shown for the optimization of a labyrinth shaft seal used in steam turbines. Within the optimization the opposed objectives of minimizing leakage mass flow and decreasing total enthalpy increase due to friction are considered.


Sign in / Sign up

Export Citation Format

Share Document