scholarly journals Performance Modeling of Bio-Inspired Routing Protocols in Cognitive Radio Ad Hoc Network to Reduce End-to-End Delay

2019 ◽  
Vol 12 (1) ◽  
pp. 221-231
Author(s):  
Ramkumar Jaganathan ◽  
◽  
Vadivel Ramasamy ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 40 ◽  
Author(s):  
Afsana Ahamed ◽  
Hamid Vakilzadian

A vehicular ad hoc network (VANET) is a technology in which moving cars are used as routers (nodes) to establish a reliable mobile communication network among the vehicles. Some of the drawbacks of the routing protocol, Ad hoc On-Demand Distance Vector (AODV), associated with VANETs are the end-to-end delay and packet loss. We modified the AODV routing protocols to reduce the number of route request (RREQ) and route reply (RREP) messages by adding direction parameters and two-step filtering. The two-step filtering process reduces the number of RREQ and RREP packets, reduces the packet overhead, and helps to select the stable route. In this study, we show the impact of the direction parameter in reducing the end-to-end delay and the packet loss in AODV. The simulation results show a 1.4% reduction in packet loss, an 11% reduction in the end-to-end delay, and an increase in throughput.


2013 ◽  
Vol 834-836 ◽  
pp. 1087-1090
Author(s):  
Ping Zong ◽  
Jun Qin

With the expansion of the network, especially in the case of the nodes frequently moving, clustering routing protocol can reduce the impact of the changed topology on routing protocols, and improve the network scalability and reduce routing overhead. Based on the analysis of the problems of CBRP clustering routing protocol, this paper presents a CRBAC clustering routing algorithm based on ant colony algorithm. The simulation results show that, in the circumstance that the algorithm doesnt significantly increase the routing overhead, improved clustering routing protocol CRBAC get better performance than CBRP. They reflect on the clusters structure more reasonable and stable, the average end-to-end delay and network lifetime significantly improved.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Aslinda Hassan ◽  
Mohamed H. Ahmed ◽  
M. A. Rahman

In a sparse vehicular ad hoc network, a vehicle normally employs a carry and forward approach, where it holds the message it wants to transmit until the vehicle meets other vehicles or roadside units. A number of analyses in the literature have been done to investigate the time delay when packets are being carried by vehicles on both unidirectional and bidirectional highways. However, these analyses are focusing on the delay between either two disconnected vehicles or two disconnected vehicle clusters. Furthermore, majority of the analyses only concentrate on the expected value of the end-to-end delay when the carry and forward approach is used. Using regression analysis, we establish the distribution model for the time delay between two disconnected vehicle clusters as an exponential distribution. Consequently, a distribution is newly derived to represent the number of clusters on a highway using a vehicular traffic model. From there, we are able to formulate end-to-end delay model which extends the time delay model for two disconnected vehicle clusters to multiple disconnected clusters on a unidirectional highway. The analytical results obtained from the analytical model are then validated through simulation results.


2019 ◽  
Vol 8 (3) ◽  
pp. 6554-6562

Wireless Ad hoc Network is established by a collection of mobile nodes without any fixed infrastructure, where each node plays a role of the router. There are not any centralize control to handle the routing process of network, due to the dynamic tropology and infrastructure less network the network is vulnerable to various kinds of attacks. Therefore, numerous proactive, reactive and hybrid routing protocols have been recommended, among which one of the well-known a protocol is AODV due to its high-performance gain. This research work contributes towards mitigating network layer attacks on routing protocols in Wireless Ad hoc Networks. Problem and it's security issues because its consequences and existing mechanisms for detection and prevention with the context of AODV protocol is a challenge in Wireless Ad hoc Network, particularly in MANET and Sensor network. We present an AODV based secure routing algorithm for detection and prevention of different network layer attacks such as blackhole and rushing attacks. We use different types of security parameters like node sequence numbers, hop count, trust value, path value, acknowledge time, the threshold value and ALERT packet message to design a secure algorithm for AODV routing protocol. It shows enactment evaluation of AODV with the enhanced secure routing algorithm and existing routing algorithm through simulations which will confirm the effectiveness and accuracy of the algorithm by considering performance metrics like throughput, packet delivery ratio and end to end delay. Using network simulator NS-2.35 the experimental results have been shown an improvement in throughput, packet delivery ratio (PDR), and end to end delay using IDSAODV and results are compared with normal AODV routing protocol for blackhole and rushing attacks. The comparative results have been also shown with proposed IDSAODV and existing method


Author(s):  
Linna Oktaviana Sari ◽  
Agusurio Azmi ◽  
Ery Safrianti ◽  
Feranita Jalil

Pekanbaru city is a large area, therefore traffic congestion often occurs due to the density of society’s vehicles. From this problem, it is needed a technology that can exchange information between vehicles. Information Technology that can involve many vehicles with special network types without dependence on an infrastructure is Ad Hoc Network. One type of this network is Vehicular Ad Hoc Network (VANET). VANET is a new concept in enabling communication between Vehicle to Vehicle (V2V). For efficient data packet delivery, VANET requires a routing protocol. In this research, for simulated and analyzed performance is used the Dynamic Source Routing (DSR) and Temporally Ordered Routing Algorithm (TORA) protocol. NS-2 is used to simulated a moved nodes, SUMO software is used to simulated real map of SKA Mall crossroad and parameter the quality of performance routing protocol DSR can determined by End to End Delay, Packet Delivery Ratio (PDR) and Routing Overhead (RO). This simulation uses scenario 100 nodes, 150 nodes, 200 nodes and 250 nodes. The simulation results with the scenario of changing the number of nodes, the DSR routing protocol produces better performance with an average of  End to End Delay is 0.1066 s, average of PDR is 95.45% and average of RO is 1.0076. While the TORA routing protocol has an average of End to End Delay is 0.1163s, average of PDR is 93.49% and average of RO is 1.0801. And in the scenario of node speed changes, the TORA routing protocol produces better performance with an average of End to End Delay is 0.0861 s and average of PDR 97.37%. While the DSR routing protocol is better with an average of RO is 1.0076.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


Author(s):  
Mila Rosiana ◽  
Andy Hidayat Jatmika ◽  
Ariyan Zubaidi

Mobile Ad-Hoc Network (MANET) adalah jaringan wireless dari kumpulan node yang tidak memiliki router tetap. Setiap node dalam jaringan bertindak sebagai router yang bertanggung jawab untuk menemukan dan menangani rute antar node. Dalam penelitian ini, konsep energy aware menggunakan algoritma EA-SHORT diterapkan pada kerangka kerja Zone Routing Protocol (ZRP). EA-SHORT mencoba mendistribusikan beban jaringan ke semua node yang ada dengan memanfaatkan variasi jumlah energi dengan memilih node yang memiliki cukup energi yang dapat berpartisipasi dalam rute dan menghindari node yang memiliki energi rendah. Kinerja ZRP akan dibandingkan dengan EA-SHORT ZRP yang telah dimodifikasi dengan EA-SHORT yang diukur dari nilai parameter yang ditentukan. Dari simulasi, hasilnya menunjukkan, pada node 50, throughput meningkat sebesar 12,374%. Untuk 100 node, peningkatan sebesar 44.597%. Pada rata-rata average end to end delay , dengan 50 node, nilai EA-SHORT ZRP menurun sebesar 20.063%, 100 node EA-SHORT ZRP menurun sebesar 8.375%. Hasil PDR pada EA-SHORT ZRP dengan 50 node meningkat 0,545%, dan untuk EA-SHORT ZRP 100 node meningkat sebesar 21,301%


2014 ◽  
Vol 989-994 ◽  
pp. 4633-4636
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

In recent years,the ad hoc network has been paid extensive attention due to its characteristics of non-center and self-organization.Firstly this paper introduces three typical routing protocols AODV,DSDV,DSR,and the principles of them; then,adopts the NS2 simulation platform to simulate the performance of end-to-end delay,routing overhead and packet delivery ratio by changing the number of nodes and the paused time of nodes.Finally,by comparing the simulating results, the comparison conclusion is provided.


2021 ◽  
Vol 10 (2) ◽  
pp. 1080-1091
Author(s):  
Hussain Falih Mahdi ◽  
Mohammed Salah Abood ◽  
Mustafa Maad Hamdi

VANET is a branch of MANETS, where each vehicle is a node, and a wireless router will run. The vehicles are similar to each other will interact with a wide range of nodes or vehicles and establish a network. VANETs provide us with the infrastructure to build new solutions for improving safety and comfort for drivers and passengers. There are several routing protocols proposed and evaluated for improving VANET's performance. The simulator is preferred over external experience because it is easy, simple, and inexpensive. In this paper, we choose AODV protocol, DSDV protocol, and DSR protocol with five different nodes density. For each protocol, as regards specific parameters like (throughput, packet delivery ratio, and end- to- end delay). On simulators that allow users to build real-time navigation models of simulations using VANET. Tools (SUMO, MOVE, and NS-2) were used for this paper, then graphs were plotted for evaluation using Trace-graph. The results showed the DSR is much higher than AODV and DSDV, In terms of throughput. While DSDV is the best choice because of the low average end to end delay. From the above, we conclude that each strategy has its own negative and positive aspects that make it ideally suited to a particular scenario than other scenarios.


Sign in / Sign up

Export Citation Format

Share Document