scholarly journals Feature Selection Models Based on Hybrid Firefly Algorithm with Mutation Operator for Network Intrusion Detection

2021 ◽  
Vol 14 (1) ◽  
pp. 192-202
Author(s):  
Karrar Alwan ◽  
◽  
Ahmed AbuEl-Atta ◽  
Hala Zayed ◽  
◽  
...  

Accurate intrusion detection is necessary to preserve network security. However, developing efficient intrusion detection system is a complex problem due to the nonlinear nature of the intrusion attempts, the unpredictable behaviour of network traffic, and the large number features in the problem space. Hence, selecting the most effective and discriminating feature is highly important. Additionally, eliminating irrelevant features can improve the detection accuracy as well as reduce the learning time of machine learning algorithms. However, feature reduction is an NPhard problem. Therefore, several metaheuristics have been employed to determine the most effective feature subset within reasonable time. In this paper, two intrusion detection models are built based on a modified version of the firefly algorithm to achieve the feature selection task. The first and, the second models have been used for binary and multiclass classification, respectively. The modified firefly algorithm employed a mutation operation to avoid trapping into local optima through enhancing the exploration capabilities of the original firefly. The significance of the selected features is evaluated using a Naïve Bayes classifier over a benchmark standard dataset, which contains different types of attacks. The obtained results revealed the superiority of the modified firefly algorithm against the original firefly algorithm in terms of the classification accuracy and the number of selected features under different scenarios. Additionally, the results assured the superiority of the proposed intrusion detection system against other recently proposed systems in both binary classification and multi-classification scenarios. The proposed system has 96.51% and 96.942% detection accuracy in binary classification and multi-classification, respectively. Moreover, the proposed system reduced the number of attributes from 41 to 9 for binary classification and to 10 for multi-classification.

2021 ◽  
Vol 13 (2) ◽  
pp. 77-93
Author(s):  
Partha Ghosh ◽  
Dipankar Sarkar ◽  
Joy Sharma ◽  
Santanu Phadikar

The present era is being dominated by cloud computing technology which provides services to the users as per demand over the internet. Satisfying the needs of huge people makes the technology prone to activities which come up as a threat. Intrusion detection system (IDS) is an effective method of providing data security to the information stored in the cloud which works by analyzing the network traffic and informs in case of any malicious activities. In order to control high amount of data stored in cloud, data is stored as per relevance leading to distributed computing. To remove redundant data, the authors have implemented data mining process such as feature selection which is used to generate an optimum subset of features from a dataset. In this paper, the proposed IDS provides security working upon the idea of feature selection. The authors have prepared a modified-firefly algorithm which acts as a proficient feature selection method and enables the NSL-KDD dataset to consume less storage space by reducing dimensions as well as less training time with greater classification accuracy.


2020 ◽  
Vol 4 (5) ◽  
pp. 61-74
Author(s):  
Rabie A. Ramadan ◽  
Kusum Yadav

Nowadays, IoT has been widely used in different applications to improve the quality of life. However, the IoT becomes increasingly an ideal target for unauthorized attacks due to its large number of objects, openness, and distributed nature. Therefore, to maintain the security of IoT systems, there is a need for an efficient Intrusion Detection System (IDS). IDS implements detectors that continuously monitor the network traffic. There are various IDs methods proposed in the literature for IoT security. However, the existing methods had the disadvantages in terms of detection accuracy and time overhead. To enhance the IDS detection accuracy and reduces the required time, this paper proposes a hybrid IDS system where a pre-processing phase is utilized to reduce the required time and feature selection as well as the classification is done in a separate stage. The feature selection process is done by using the Enhanced Shuffled Frog Leaping (ESFL) algorithm and the selected features are classified using Light Convolutional Neural Network with Gated Recurrent Neural Network (LCNN-GRNN) algorithm. This two-stage method is compared to up-to-date methods used for intrusion detection and it over performs them in terms of accuracy and running time due to the light processing required by the proposed method.


Author(s):  
Anand Kannan ◽  
Karthik Gururajan Venkatesan ◽  
Alexandra Stagkopoulou ◽  
Sheng Li ◽  
Sathyavakeeswaran Krishnan ◽  
...  

This paper proposes a new cloud intrusion detection system for detecting the intruders in a traditional hybrid virtualized, cloud environment. The paper introduces an effective feature selection algorithm called Temporal Constraint based on Feature Selection algorithm and also proposes a classification algorithm called hybrid decision tree. This hybrid decision tree has been developed by extending the Enhanced C4.5 algorithm an existing decision tree based classifier. Furthermore, the experiments conducted on the sample Cloud Intrusion Detection Datasets (CIDD) show that the proposed cloud intrusion detection system provides better detection accuracy than the existing work and reduces the false positive rate.


Intrusion Detection is the practice of recognizing items or events that do not follow an expected behavior or do not coordinate with other normal items in the dataset. Network traffic is increasing identifiable event to growing use of the web services and smart devices. The NSL-KDD is widely utilized dataset in the analysis of Intrusion Detection over computer networks. The dataset contains high dimensional data and also the imbalanced class. Due to this kind of dataset the imbalanced classification problem arrives. To overcome the deficit of data instances in one particular class, create extra data samples on that minority class. Detection of network anomalies from high dimensional dataset is critical and taking too much of time to process, so it is carry out using bio inspired feature selection technique. In the proposed system, the synthetic minority over-sampling Technique is used, which is one kind of effective method to rectify the class imbalance problem. Then the bio-inspired based features selecting process is carried out using Modified FireFly Algorithm (MFFA) and the resultant optimized dataset is taken for further process. After the features selection, the obtained dataset is fed into tree based J48 algorithm for build the Intrusion Detection System and detect the normal and anomalies in the network. Then, the ensemble bagged J48 classification is performed to improve the prediction accuracy.


2020 ◽  
pp. 1-20
Author(s):  
K. Muthamil Sudar ◽  
P. Deepalakshmi

Software-defined networking is a new paradigm that overcomes problems associated with traditional network architecture by separating the control logic from data plane devices. It also enhances performance by providing a highly-programmable interface that adapts to dynamic changes in network policies. As software-defined networking controllers are prone to single-point failures, providing security is one of the biggest challenges in this framework. This paper intends to provide an intrusion detection mechanism in both the control plane and data plane to secure the controller and forwarding devices respectively. In the control plane, we imposed a flow-based intrusion detection system that inspects every new incoming flow towards the controller. In the data plane, we assigned a signature-based intrusion detection system to inspect traffic between Open Flow switches using port mirroring to analyse and detect malicious activity. Our flow-based system works with the help of trained, multi-layer machine learning-based classifier, while our signature-based system works with rule-based classifiers using the Snort intrusion detection system. The ensemble feature selection technique we adopted in the flow-based system helps to identify the prominent features and hasten the classification process. Our proposed work ensures a high level of security in the Software-defined networking environment by working simultaneously in both control plane and data plane.


2021 ◽  
Vol 336 ◽  
pp. 08008
Author(s):  
Tao Xie

In order to improve the detection rate and speed of intrusion detection system, this paper proposes a feature selection algorithm. The algorithm uses information gain to rank the features in descending order, and then uses a multi-objective genetic algorithm to gradually search the ranking features to find the optimal feature combination. We classified the Kddcup98 dataset into five classes, DOS, PROBE, R2L, and U2R, and conducted numerous experiments on each class. Experimental results show that for each class of attack, the proposed algorithm can not only speed up the feature selection, but also significantly improve the detection rate of the algorithm.


2021 ◽  
Author(s):  
Navroop Kaur ◽  
Meenakshi Bansal ◽  
Sukhwinder Singh S

Abstract In modern times the firewall and antivirus packages are not good enough to protect the organization from numerous cyber attacks. Computer IDS (Intrusion Detection System) is a crucial aspect that contributes to the success of an organization. IDS is a software application responsible for scanning organization networks for suspicious activities and policy rupturing. IDS ensures the secure and reliable functioning of the network within an organization. IDS underwent huge transformations since its origin to cope up with the advancing computer crimes. The primary motive of IDS has been to augment the competence of detecting the attacks without endangering the performance of the network. The research paper elaborates on different types and different functions performed by the IDS. The NSL KDD dataset has been considered for training and testing. The seven prominent classifiers LR (Logistic Regression), NB (Naïve Bayes), DT (Decision Tree), AB (AdaBoost), RF (Random Forest), kNN (k Nearest Neighbor), and SVM (Support Vector Machine) have been studied along with their pros and cons and the feature selection have been imposed to enhance the reading of performance evaluation parameters (Accuracy, Precision, Recall, and F1Score). The paper elaborates a detailed flowchart and algorithm depicting the procedure to perform feature selection using XGB (Extreme Gradient Booster) for four categories of attacks: DoS (Denial of Service), Probe, R2L (Remote to Local Attack), and U2R (User to Root Attack). The selected features have been ranked as per their occurrence. The implementation have been conducted at five different ratios of 60-40%, 70-30%, 90-10%, 50-50%, and 80-20%. Different classifiers scored best for different performance evaluation parameters at different ratios. NB scored with the best Accuracy and Recall values. DT and RF consistently performed with high accuracy. NB, SVM, and kNN achieved good F1Score.


Sign in / Sign up

Export Citation Format

Share Document