scholarly journals A QRS-Detection Algorithm for Real-Time Applications

2021 ◽  
Vol 14 (1) ◽  
pp. 356-367
Author(s):  
Akram Khalaf ◽  
◽  
Samir Mohammed ◽  

The QRS detection algorithm is substantial for healthcare monitoring and diagnostic applications. A low error detection without adding more computation is a big challenge for researchers. The proposed QRS detection algorithm is a simple, real-time, and high-performance hybrid technique based on decision tree and artificial neural networks (ANN). In this study, the five stages algorithm is designed, implemented, and evaluated for wearable healthcare applications. The first stage is filtering the original ECG signal to reduce the noise and baseline wandering. After that, a maximum or minimum moving-window for positive or negative peaks respectively is searching R-peaks for any expected value and finding the Q and S corresponding to this R-peak. Only these values from all ECG samples are passed to the next stage for feature extraction to reduce the algorithm computation. Stage four is excluded any unlikely points using the mean of the slope and level based on a simple decision tree. Finally, artificial neural networks are designed to classify the rest point for QRS detection using ANNs for each peak polarity to improve the network’s performance by separating the data as a positive or negative peak. The algorithm is evaluated based on MATLAB using the MIT-BIH Arrhythmia Database, and the results show a low error rate detection of 0.25%, high sensitivity of 99.86%, and high predictivity of 99.89%. We develop a new approach for real-time QRS detection with low resources and high efficiency compared with other approaches.

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1298 ◽  
Author(s):  
Stefano Massucco ◽  
Gabriele Mosaico ◽  
Matteo Saviozzi ◽  
Federico Silvestro

PhotoVoltaic (PV) plants can provide important economic and environmental benefits to electric systems. On the other hand, the variability of the solar source leads to technical challenges in grid management as PV penetration rates increase continuously. For this reason, PV power forecasting represents a crucial tool for uncertainty management to ensure system stability. In this paper, a novel hybrid methodology for the PV forecasting is presented. The proposed approach can exploit clear-sky models or an ensemble of artificial neural networks, according to day-ahead weather forecast. In particular, the selection among these techniques is performed through a decision tree approach, which is designed to choose the best method among those aforementioned. The presented methodology has been validated on a real PV plant with very promising results.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2538
Author(s):  
Shuang Zhang ◽  
Feng Liu ◽  
Yuang Huang ◽  
Xuedong Meng

The direct-sequence spread-spectrum (DSSS) technique has been widely used in wireless secure communications. In this technique, the baseband signal is spread over a wider bandwidth using pseudo-random sequences to avoid interference or interception. In this paper, the authors propose methods to adaptively detect the DSSS signals based on knowledge-enhanced compressive measurements and artificial neural networks. Compared with the conventional non-compressive detection system, the compressive detection framework can achieve a reasonable balance between detection performance and sampling hardware cost. In contrast to the existing compressive sampling techniques, the proposed methods are shown to enable adaptive measurement kernel design with high efficiency. Through the theoretical analysis and the simulation results, the proposed adaptive compressive detection methods are also demonstrated to provide significantly enhanced detection performance efficiently, compared to their counterpart with the conventional random measurement kernels.


2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.


2014 ◽  
Vol 33 (6) ◽  
pp. 419-432 ◽  
Author(s):  
Christian von Spreckelsen ◽  
Hans-Jörg von Mettenheim ◽  
Michael H. Breitner

Author(s):  
Serkan Eti

Quantitative methods are mainly preferred in the literature. The main purpose of this chapter is to evaluate the usage of quantitative methods in the subject of the investment decision. Within this framework, the studies related to the investment decision in which quantitative methods are taken into consideration. As for the quantitative methods, probit, logit, decision tree algorithms, artificial neural networks methods, Monte Carlo simulation, and MARS approaches are taken into consideration. The findings show that MARS methodology provides a more accurate results in comparison with other techniques. In addition to this situation, it is also concluded that probit and logit methodologies were less preferred in comparison with decision tree algorithms, artificial neural networks methods, and Monte Carlo simulation analysis, especially in the last studies. Therefore, it is recommended that a new evaluation for investment analysis can be performed with MARS method because it is understood that this approach provides better results.


Author(s):  
Martín Montes Rivera ◽  
Alejandro Padilla ◽  
Juana Canul-Reich ◽  
Julio Ponce

Vision sense is achieved using cells called rods (luminosity) and cones (color). Color perception is required when interacting with educational materials, industrial environments, traffic signals, among others, but colorblind people have difficulties perceiving colors. There are different tests for colorblindness like Ishihara plates test, which have numbers with colors that are confused with colorblindness. Advances in computer sciences produced digital assistants for colorblindness, but there are possibilities to improve them using artificial intelligence because its techniques have exhibited great results when classifying parameters. This chapter proposes the use of artificial neural networks, an artificial intelligence technique, for learning the colors that colorblind people cannot distinguish well by using as input data the Ishihara plates and recoloring the image by increasing its brightness. Results are tested with a real colorblind people who successfully pass the Ishihara test.


Sign in / Sign up

Export Citation Format

Share Document