Evaluation Efficiency of Different Isolate of Actinomycetes for Control of Cucumber Seedling Damping-off Disease Caused by Rhizoctonia solani (Khun)

2021 ◽  
Vol 39 (4) ◽  
pp. 281-288
Author(s):  
Mohamad Amer Fayyadh ◽  
◽  
Lina Awad ◽  

Fayyadh, M.A. and L.K. Awad. 2021. Evaluation Efficiency of Different Isolate of Actinomycetes for Control of Cucumber Seedling Damping-off Disease Caused by Rhizoctonia solani (Khun). Arab Journal of Plant Protection, 39(4): 281-288. https://doi.org/10.22268/AJPP-39.4.281288 This study was conducted in Plant Protection Department, College of Agriculture, University of Basrah during the period 2017-2018 aimed to isolate and identify Actinomycetes from different environmental sources and evaluate their efficiency to control cucumber damping off disease caused by Rhizoctonia solani. 28 isolates of Actinomycetes were isolated from different sources from the Basrah region. All such isolates were gram positive, amylase and catalase positive and they had branched hyphae. Molecular identification following amplification of 16sRNA confirmed that Actinomycetes isolate No 6 isolated from soil had a similarity of 99% with Streptomyces griseus, whereas the isolate No 66 isolated from date palm roots had a similarity of 99% with Brevibacterium celere. The nucleotide sequence of the two isolates has been deposited at NCBI with Genbank accession number LC501385.1 for S. griseus and LC501386.1 for B. celere. The dual culture technique showed that Actinomycetes isolates S. griseus and B. celere had high antagonistic activity against Rhizoctonia solani, which produced inhibition zones of 7 and 15 mm in dimeter, respectively. On the other hand, volatile compoundsreleased from S. griseus and B. celere inhibited the growth of R. solani by 68 and 81.5%, respectively. Pot experiment showed that all actinomycetes isolates significantly reduced cucumber seedling damping–off incidence caused by R. solani. Keywords: Actinomycetes, Rhizoctonia solani, Cucumber, Biological Control

2018 ◽  
Vol 31 (2) ◽  
pp. 11-23
Author(s):  
Lina K. Awad ◽  
Mohammed A. Fayyadh

A 28 Actinomycetes isolates which collected from different environmental sources in Basra province were described as Gram positive and are characterized by producing branching hyphae. Two isolates were identified by molecular analysis of 16 S r RNA gene. Molecular identification confirmed that two isolates of Actinomycetes from soil had a similarity of 99% with Streptomyces griseus. The sequence has been deposited at NCBI with Gen bank accession number (NBRC 14886, AB 184627. 1). While the isolates of date palm roots was analogous to Brevibacterium celere and the sequence of this strain deposited at NCBI with Gen bank accession number (DQ164,K414744601). The dual culture technique showed that Actinomyces isolates 44 had high antagonistic activity against Rhizoctonia solani as inhibition zone reached 1.7 cm, in contrast to Actinomyces 24 and S. griseus which revealed a high antagonistic activity against Pythium sp. with inhibition zone reached 1.2 cm for both isolates. Pots experiment showed all Actinomyces isolates were significantly reduced cucumber seedling damping off caused by R. solani and Pythium sp. the disease incidence for R. solani damping off were reduced to 1.0% in actinomycetes 44, Actinomycetes 24 and B. celere treatment compared to 11.37 % in control treatment. Disease incidence at Pythium sp. damping off was reduced to 1.0% in Actinomycetes isolates compared with that in control treatment (4.33%). According to this study there is possibility for isolating Actinomycetes isolates which isolated from different environments sources have the ability for reducing cucumber damping off disease caused by R. solani and Pythium sp.


Author(s):  
H.V. Parmar ◽  
N.M. Gohel

Background: Chickpea wilt complex caused by several soil-borne pathogens is the major yield-reducing malady worldwide. Biological control is one of the best, low-cost and ecologically sustainable method for managing plant diseases caused by soil-borne pathogens. Methods: In this present investigation Panchagavya and Trichoderma spp. were evaluated by following poisoned food technique and dual culture technique against wilt complex causing pathogens i.e. Fusarium oxysporum f. sp. ciceri, Fusarium solani and Macrophomina phaseolina. Result: Among the different isolates of Trichoderma spp. evaluated, Trichoderma viride (AAU isolate) was highly antagonistic to F. oxysporum f. sp. ciceri (52.78%) and F. solani (65.37%) whereas, Trichoderma asperellum (AAU isolate) was highly antagonistic to M. phaseolina (65.93%). Panchagavya at the highest concentration (50%) showed significantly higher efficacy (80.74, 66.62 and 49.67%) in inhibiting the mycelial growth of all three pathogens and at the lowest concentration it was moderately effective.


2007 ◽  
Vol 53 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Naveen Kumar Arora ◽  
Min Jeong Kim ◽  
Sun Chul Kang ◽  
Dinesh Kumar Maheshwari

A study was conducted to investigate the possibility of involvement of chitinase and β-1,3-glucanase of an antagonistic fluorescent Pseudomonas in growth suppression of phytopathogenic fungi, Phytophthora capsici and Rhizoctonia solani . Fluorescent Pseudomonas isolates GRC3 and GRC4 were screened for their antifungal potential against phytopathogenic fungi by using dual culture technique both on solid and liquid media. The percent inhibition was calculated. Various parameters were monitored for optimization of enzyme activities by fluorescent Pseudomonas GRC3. The involvement of chitinases, β-1,3-glucanases, and antifungal metabolites of nonenzymatic nature was correlated with the inhibition of P. capsici and R. solani. The results provide evidence for antibiosis as a mechanism for antagonism. The study also confirms that multiple mechanisms are involved in suppressing phytopathogens as evidenced by the involvement of chitinase and β-1,3-glucanase in inhibition of R. solani but not P. capsici by isolate GRC3.


2018 ◽  
Vol 3 (02) ◽  
pp. 166-170
Author(s):  
Safdar Kaiser Hasmi ◽  
R. U. Khan

In-vitro effectiveness of various antagonistic fungi namely Aspergillus niger, A. flavus, Trichoderma koningii, T. atroviride, and T. harzianum were evaluated against Rhizoctonia solani by dual culture technique on potato dextrose agar. According to the observation recorded after 5 days, all the treatments were found to be superior over control (R. solani), but among all treatments A. niger was found to the most effective antagonist, with highest radial growth inhibition of the pathogen (77.01 percent), followed by A. flavus, T. harzianum and T. koningii i.e., 66.23, 64.42 and 62.20 percent. While as, T. atroviride was found to be the least effective one with minimum growth inhibition i.e., 42.21 percent. Whereas, at the same time control (R. solani) showed 100 percent radial growth and covered the whole Petri Plate within 5 days. All the bio-control agents were significantly effective to inhibit the sclerotia formation and development, except T. atroviride in which formation of sclerotia was recorded, while in all other treatments complete inhibition of sclerotia formation was recorded after 10 days of incubation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1162
Author(s):  
Ahmed A. Heflish ◽  
Ahmed Abdelkhalek ◽  
Abdulaziz A. Al-Askar ◽  
Said I. Behiry

Two molecularly identified tomato isolates, Trichoderma asperelloides Ta41 and Rhizoctonia solani Rs33, were characterized and antagonistically evaluated. The dual culture technique showed that Ta41 had a high antagonistic activity of 83.33%, while a light microscope bioassay demonstrated that the Ta41 isolate over-parasitized the pathogen completely. Under greenhouse conditions, the application of Ta41 was able to promote tomato plant growth and had a significant increase in plant height, root length, and shoot fresh, shoot dry, root fresh, and root dry weight. It also improved chlorophyll content and total phenol content significantly, both in protective and in curative treatments. The protective treatment assay exhibited the lowest disease index (16.00%), while the curative treatment showed a disease index of 33.33%. At 20 days post-inoculation, significant increases in the relative expression levels of four defense-related genes (PR-1, PR-2, PR-3, and CHS) were observed in all Ta41-treated plants when compared with the non-treated plants. Interestingly, the plants treated with Ta41 alone showed the highest expression, with relative transcriptional levels of CHS, PR-3, PR-1, and PR-2 that were, compared with the control, 3.91-, 3.13-, 2.94-, and 2.69-fold higher, respectively, and the protective treatment showed relative transcriptional levels that were 3.50-, 3.63-, 2.39-, and 2.27-fold higher, respectively. Consequently, the ability of Ta41 to promote tomato growth, suppress Rs33 growth, and induce systemic resistance supports the incorporation of Ta41 as a potential bioagent for controlling root rot disease and increasing the productivity of crops, including tomatoes.


2021 ◽  
Vol 7 ◽  
pp. 54-66
Author(s):  
Touseef Hussain ◽  
Abrar Ahmad Khan ◽  
M.A. Khan

Black scurf disease is a major problem for cultivation of potato worldwide that is managed by synthetic agrochemicals, that are increasing environmental pollution as well as residue in farm produce also.  Therefore, now a day use of bio-agents for managing black scurf is attractive feature and need of the hour. A promising bio surfactant OD02 isolate, was isolated from oil contaminated soil, utilizing its secondary metabolite after preliminary biosurfactant screening tests. Furthermore, this strain exhibited positive test with haemolytic activity, emulsification index, oil spreading test, molecular characterization with 16S rRNA universal primers revealed that the strain belongs to Bacillus group, that was further chemically characterized using TLC, exhibiting reddish pink colour as lipopeptide and demonstrated antagonistic activity against Rhizoctonia solani under in vitro using dual culture (45±0.30%) and at 3% concentration under food poisoning method. Bacillus subtilis HussainT-AMU strain is very effective against phytopathogen R. solani and can be more explored in future diseases management strategies.


Author(s):  
ERIYANTO YUSNAWAN ◽  
ALFI INAYATI ◽  
YULIANTORO BALIADI

Abstract. Yusnawan E, Inayati A, Baliadi Y. 2019. Isolation of antagonistic fungi from rhizospheres and its biocontrol activity against different isolates of soil borne fungal pathogens infected legumes. Biodiversitas 20: 2048-2054. Soilborne diseases caused by Rhizoctonia solani and Fusarium sp. are biotic limits for legume production. Biological controls offer environmental friendly control for these pathogens. This study aimed to isolate and screen Trichoderma from different rhizospheres and to obtain effective Trichoderma isolates to suppress in vitro growth of the soil borne pathogens. The antagonistic inhibitory activity was performed by dual culture method. Seven out of forty indigenous Trichoderma isolates collected from East Java, Indonesia effectively suppressed the growth of different fungal isolates, namely Rhizoctonia solani (R.s1), R. solani (R.s2) as well as Fusarium sp. which infected soybean and mung bean. In vitro study showed different suppression of the pathogens on dual culture tests. The seven isolates inhibited the growth of R. solani (R.s1), R.solani (R.s2) and Fusarium sp. ranging from 90.0 to 99.6%, 72.8 to 82.4%, and 67.9 to 90.8%, respectively. Isolate origin and genetic variability of Trichoderma played an important role in the antagonistic activity. The fast-growing of selected Trichoderma showed their abilities for space occupation and nutrition competition, which involved in the antagonistic activity. The mycelial growth of Trichoderma over pathogens showed hyperparasitism mechanism. In addition, coiling of Trichoderma over hyphal pathogens was observed during microscopic observation. The seven Trichoderma isolates, therefore, are promising as biological control agents against the soil borne fungi infected legumes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sutha Raja Kumar ◽  
R., Arulselvi A ◽  
Rex Immanuel R ◽  
Jaiganesh V ◽  
Thamarai Selvi M.

The present studies were undertaken to investigate the effect of fungal and bacterial biocontrol agents against stem rot of groundnut. The result of the dual culture technique indicated that Trichoderma isolates inhibited the growth of S. rolfsii. Among the isolate T. viride (Tv1 ) produced maximum reduction of mycelial growth. This was followed by the isolates T. harziaum and T. virens which restricted the mycelial growth when compared to control. Among the isolates T. viride (Tv1 ) at a conc. of 10, 20, 30 and 40 per cent conc. showed an increase in the inhibition of the mycelia growth recording 22.15, 15.27, 8.75 and 0.00 mm respectively. The next best in antagonist was T. harzianum. Among the Pseudomonas fluorescens isolates, PfI3 produced maximum reduction of mycelial growth accounting for 74.97 per cent reduction over control. Also, a general increase in the conc. of the Antagonistic culture filtrate showed an increase in the inhibition of the mycelial growth of the test pathogen.


2016 ◽  
Vol 1 (02) ◽  
pp. 138-144
Author(s):  
Rashmi Nigam ◽  
A. K. Sharma ◽  
Joginder Singh

Plant growth promoting rhizobacteria (PGPR) are a heterogeneous group of bacteria that are found in the rhizosphere and rhizoplane which can improve plant growth. Pseudomonas spp. is one of the most promising groups of PGPR which can control plant pathogenic microbes in the soil. In this study, an attempt was made to isolate Pseudomonas spp., a potent PGPR in the rhizosphere. Through appropriate microbiological and biochemical methods, the study demonstrated the presence of fluorescent and nonfluorescent Pseudomonads in the rhizosphere of pea. 12 different strains of Pseudomonas were isolated from pea rhizosphere and identified by biochemical tests. Out of these strains five were screened against wilt and root rot pathogens of pea. Antagonistic activity of Pseudomonas isolates were evaluated against wilt and root rots pathogens i.e. Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum through dual culture technique. The study exhibited that all Pseudomonas strains significantly inhibited the growth of Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum as compared to control. Among all the Pseudomonas isolates Ps5 showed maximum inhibition against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum. Augmentation of such PGPR will ensure a healthy micro climate for pea.


2010 ◽  
Vol 10 ◽  
pp. 760-765 ◽  
Author(s):  
S. C. Sati ◽  
P. Arya

The antagonistic activity of five aquatic hyphomycetes, viz.,Heliscus lugdunensis,Tetrachaetum elegans,Tetracladium breve,T. marchalianum, andT. nainitalense, against seven plant pathogenic fungi was studied using a dual culture technique. Inhibitory activity of tested aquatic hyphomycetes was determined by measuring the radial growth of plant pathogenic fungi on dual culture plates.Tetrachaetum elegansshowed antagonistic activity againstColletotrichum falcatum,Fusarium oxysporum,Pyricularia oryzae,Sclerotium sclerotiorum, andTilletia indicaHeliscus lugdunensisshowed antagonism against only two plant pathogenic fungi,Rhizoctonia solaniandColletotrichum falcatum.Tetracladium breve,T. marchalianum, andT. nainitalenseshowed no response towards tested plant pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document