scholarly journals Liposomes as Drug Delivery System: An Updated Review

2021 ◽  
Vol 11 (5-S) ◽  
pp. 149-158
Author(s):  
Faisal Farooque ◽  
Mohd Wasi ◽  
Mohd Muaz Mughees

The liposomes were the first Nano medicine to be accepted for clinical use. They are the spherical vesicles that possess mid empty aqueous space, which is encircled by a phospholipids bilayer. Liposomes have immense capability to prevent the degradation of drugs, reduce side effects and are thus increasingly used for targeted drug delivery. The drugs can either be incorporated inside the aqueous space (hydrophilic drugs) or inside the phospholipids bilayer (hydrophobic drugs) of liposomes for the targeted drug delivery. Considering the importance of liposomes as a drug delivery system, the present review paper tries to look into its details. The entire paper is classified into six parts. The first part is introductory. The second part discusses the classification of liposomes. In the third segment, the structural components of liposomes are detailed. The fourth portion of the paper talks about methods of preparation of liposomes. In the fifth segment, the characterization of liposomes is discussed. The sixth part discusses the application of liposomes and the last part is given to concluding observation. Literature shows distinct types of liposomes, categorized based on size, number of lipid layers, composition and preparation method. They are recently used for various nanoscale drugs formulation and a piece of concrete evidence was seen recently in recommended drug for black fungus i.e., Liposomal Amphotericin B. Although, their development and application are remaining the challenge due to costly and tedious processes involved in their production and development. Therefore, further research and development are required to perform to overcomes these challenges. Keywords: Liposome, characterization, amphiphatic, controlled release, phospholipids

2018 ◽  
Vol 17 (2) ◽  
pp. 195 ◽  
Author(s):  
Hina Raza ◽  
Nazar Muhammad Ranjha ◽  
Asif Mahmood ◽  
Farooq Azam ◽  
Rai Muhammad Sarfraz ◽  
...  

2011 ◽  
Vol 17 (5) ◽  
pp. 607-613 ◽  
Author(s):  
Sanjay J. Kshirsagar ◽  
Mangesh R. Bhalekar ◽  
Jiten N. Patel ◽  
Santosh K. Mohapatra ◽  
Nitin S. Shewale

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3321
Author(s):  
Etienne J. Slapak ◽  
Lily Kong ◽  
Mouad el Mandili ◽  
Rienk Nieuwland ◽  
Alexander Kros ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) has the worst survival rate of all cancers. This poor prognosis results from the lack of efficient systemic treatment regimens, demanding high-dose chemotherapy that causes severe side effects. To overcome dose-dependent toxicities, we explored the efficacy of targeted drug delivery using a protease-dependent drug-release system. To this end, we developed a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSN) functionalized with an avidin–biotin gatekeeper system containing a protease linker that is specifically cleaved by tumor cells. Bioinformatic analysis identified ADAM9 as a PDAC-enriched protease, and PDAC cell-derived conditioned medium efficiently cleaved protease linkers containing ADAM9 substrates. Cleavage was PDAC specific as conditioned medium from leukocytes was unable to cleave the ADAM9 substrate. Protease linker-functionalized MSNs were efficiently capped with avidin, and cap removal was confirmed to occur in the presence of PDAC cell-derived ADAM9. Subsequent treatment of PDAC cells in vitro with paclitaxel-loaded MSNs indeed showed high cytotoxicity, whereas no cell death was observed in white blood cell-derived cell lines, confirming efficacy of the nanoparticle-mediated drug delivery system. Taken together, this research introduces a novel ADAM9-responsive, protease-dependent, drug delivery system for PDAC as a promising tool to reduce the cytotoxicity of systemic chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document