scholarly journals OPTIMIZED FAST DISINTEGRATING TABLETS, BOOSTED OSELTAMIVIR PHOSPHATE ORALLY FAST DISINTEGRATING TABLETS

2021 ◽  
Vol 10 (6) ◽  
pp. 3781-3788
Author(s):  
Peeush Singhal

Background Around 33% of the populace (fundamentally pediatric and geriatric) has gulping hardships, bringing about helpless consistence with oral tablet drug treatment which prompts decreased in general treatment viability. For this explanation, tablets that can quickly break down or deteriorate in the oral cavity have drawn in a lot of consideration. Objective research was designed to develop and evaluate boosted orally fast disintegrating tablets (OFDT) for oro-buccal drug delivery of oseltamivir phosphate. Methods In the present study six formulations of mouth dissolving tablet of oseltamivir were prepared by direct compression method using SSG as a super disintegrating agent with lactose, talcum, mannitol, SLS and starch. The prepared tablets were then subjected to various evaluation parameters. Results every one of the outcomes was observed to be inside satisfactory reaches. The formulation F6 manufacturing utilizing SSG 50mg and SLS 10mg showed the higher medication content (98%), while the formulation F2 showed the least medication content (92%). It was seen that with the increment in SSG concentration, the medication content was additionally increased. SEM concentrate on showed request of expanding unpleasantness of tablet surface is F1<F2<F3<F4<F5<F6. The expanding unpleasantness may be answerable for higher % of medication release. Formulation F1 showed the most elevated medication discharge (97.735%), while the formulation F5 showed the least medication discharge (56.24%). Finally, it was inferred that SSG, SLS, D-mannitol, starch, lactose, and talcum powder can be effectively utilized in the formulation of Oseltamivir phosphate mouth dissolving tablets. Conclusion: From the above work it was presumed that the formulation of the Oseltamivir Phosphate was observed to be more achievable than the regular one.

2018 ◽  
Vol 10 (1) ◽  
pp. 31-38 ◽  
Author(s):  
S. Karim ◽  
A. Biswas ◽  
A. Bosu ◽  
F. R. Laboni ◽  
A. S. Julie ◽  
...  

Present study aspires at the design of an immediate release formulation with prospective use of fexofenadine hydrochloride by exploring the effect of sodium starch glycolate as super disintegrant. Fexofenadine hydrochloride immediate release tablets (Formulations F-1, F-2, F-3, F-4 and F-5) using different ratios of sodium starch glycolate as a disintegrant were prepared by direct compression method. Standard physicochemical tests were performed for all the formulations. Dissolution studies of the formulations were done in phosphate buffer, pH 6.8 using USP apparatus II (paddle apparatus) at 50 rpm. Percent release of fexofenadine hydrochloride of formulations F-1, F-2, F-3, F-4 and F-5 were 89.98%, 90.98%, 92.95, 96.92% and 99.85%, respectively after 1 h and the release pattern followed the zero order kinetics. The release rate in the formulation F-5 was higher compared to other formulations and the studied market products. Sodium starch glycolate speed up the release of the drug from the core tablets, and the release of fexofenadine hydrochloride from tablets was directly proportional to the amount of sodium starch glycolate present in the formulations and there by produced immediate action.


2012 ◽  
Vol 4 (2) ◽  
pp. 25-28
Author(s):  
Manoj M Nitalikar ◽  
Dinesh M Sakarkar

An attempt was made to prepare fast dissolving tablets of anti-inflammatory drug Nimesulide preparing by direct compression method. The superdisintegrants Cross-carmellose and Sodium starch glycolate were used in different concentrations. Twelve formulations using those superdisintegrants at different concentration levels were prepared to access their efficiency and critical concentration level. Different evaluation parameters for tablet were studied. Tablets containing Cross-carmellose showed superior organoleptic properties and excellent in-vitro drug release as compared to other formulations. It was observed that on increasing the concentration of Cross-carmellose, the rate of disintegration was increased whereas on increasing the concentration of Sodium starch glycolate the rate of disintegration was decreased. The percentage drug release was observed as 96.32% when the concentration of Cross-carmellose was increased, whereas the same was not observed on increasing the concentration of Sodium starch glycolate. DOI: http://dx.doi.org/10.3329/sjps.v4i2.10436 S. J. Pharm. Sci. 4(2) 2011: 25-28


2021 ◽  
Vol 11 (2) ◽  
pp. 42-50
Author(s):  
Vandana Gupta ◽  
Ashish Manigauha

The purpose of present exploration was to modify kappa (k)-Carrageenan, by crosslinking, and assessed it as a tablet disintegrant to strengthen the solubility of the drug (aceclofenac) in tablet formulation. Modified k-Carrageenan was synthesized by reacting it with epichlorhydrin at heterogenous  conditions. The swelling action of the product was investigated in order to optimize reaction circumstances for chemical cross-linking. Best modified k-Carrageenan procured by optimizing the reaction conditions and it was characterized for swelling index, particle size distribution, solubility, viscosity, gel strength and Fourier transform infrared spectroscopy (FTIR). Influence of modified k-Carrageenan on dissolution profile of therapeutic was also investigated along with other evaluation parameters. Modified k-Carrageenan exhibiting significant swelling index which is comparable to that of superdisintegrants. On comparative investigation as a tablet disintegrant by preparing anhydrous dicalcium phosphate tablet, modified k-Carrageenan showed disintegration time less than 20 seconds. Dissolution of aceclofenac (Class II) tablet formulaion utilizing modified k-Carrageenan was comparable with commercially available superdisintegrants. Faster dissolution of the accommodated drug was achieved with modified k-Carrageenan which was comparable with dissolution of the tablet formulation containing other superdisintegrants. The competent concentration of k-Carrageenan was found to be 5-15% as tablet disintegrant. Modified k-Carrageenan might be encouraging tablet disintegrant in fast dissolving formulations and can be worn in direct compression method. Keywords: k-Carageenan. Epichlorhydrin. Aceclofenac. Crosslinking. Superdisintegrant


2014 ◽  
Vol 1060 ◽  
pp. 58-61
Author(s):  
Vipaluk Patomchaiviwat ◽  
Suchada Piriyaprasarth ◽  
Bunyarit Chaisomboonphan ◽  
Chitatharinth Limpoemwuttiporn ◽  
Pornsuda Nuamnoi

The aim of this study was to investigate the modification of black glutinous rice starch (BGRS) as tablet filler. The black glutinous rice was treated with NaCl and NaOH to obtain BGRS. The native BGRS was modified by pregelatinizaion and prepared as co-composite and used as filler in tablet formulation compared with Starch 1500®. Propranolol was used as a model drug. The properties of tablets including disintegration time were evaluated. Interestingly, the disintegration times of the native BGRS was less than 90s which was faster than Starch 1500®. The results suggest that the native BGRS would be used in fast disintegrating tablets. While the disintegration times of pregelatinized BGRS was more than 30 min. Thus, the pregelatinized BGRS might be used for sustained release tablet. For the co-composite method, PVP K90 in the concentration of 1, 3, 5, 7 and 9 % w/w was incorporated with BGRS. The tablets of the co-composite producing by direct compression method were compared with tablets producing by wet granulation method using PVP K90 as binder. In concentration of 3% w/w PVP K90, the co-composite was comparable to wet granulation method in term of hardness and disintegration time. Thus, it could be used as direct compression filler in pharmaceutical field.


Author(s):  
RezaSunidhi Mahant ◽  
Shivali Singla ◽  
Sachin Goyal ◽  
Bhimi Kumari ◽  
Abhishek Soni

Mouth dissolving tablet is an innovative solid unit dosage form that overcome the problem of swallowing and provide rapid disintegration and dissolution to release the drug as soon as they come in contact with saliva, hence provide quick onset action. The aim of this study was to formulate and evaluate mouth dissolving tablets of Ondansetron hydrochloride using natural super disintegrating agent. Ondansetron hydrochloride is a serotonin receptor (5-HT3) antagonist used to treat nausea and vomiting arises during chemotherapy and radiation therapy. Mouth dissolving tablets were prepared by direct compression method using natural super disintegrating agent (Plantago ovata mucilage). Prepared tablet were evaluated for Hardness, weight variation, friability, thickness, wetting time, dispersion time, water absorption ratio, disintegration and dissolution study. According to results of optimized batches it has been concluded that Formulation batch F6 was an ideal batch which contain 12% w/v concentration of Plantago ovata mucilage showed least disintegration time that is 7 seconds and maximum drug release of (98.57%) within 15 minutes and was best among all the formulations.


Author(s):  
K Sunand ◽  
V Sandhya ◽  
A Swapna ◽  
K Prasanth ◽  
A Vijaya ◽  
...  

In the present work, an attempt has been made to develop fast disintegrating tablets of Selegiline, were as sodium starch glycolate, cross povidone and cross carmellose sodium were employed as super disintegrating agents to enhance the solubility and dissolution rate of drug molecule. Formulations were prepared by direct compression method using 6mm punch on 8 station rotary tablet punching machine. The blend of all the formulations showed good flow properties such as angle of repose, bulk density and tapped density. The prepared tablets have shown good post compression parameters and they passed all the quality control evaluation parameters as per IP limits. Among all the formulations F2 formulation showed maximum percentage drug release i.e., 97.26 % in 45 min, hence it is considered as optimized formulation. The F2 formulation contains SSG as super disintegrate in the concentration of 24mg.


2013 ◽  
Vol 48 (2) ◽  
pp. 137-142
Author(s):  
S Shanmugam ◽  
Dr Senthil ◽  
T Ventrichelvan

Loratadine 10 mg mouth dissolving tablet (MDT) was prepared by using super disintegrant such as sodium starch glycollate, crosscarmellose sodium, crospovidone at various concentration, aspartame was used as sweetening agent. The excipients were used for this study was based on the compatibillity studies. All the formulation was prepared by direct compression method. Among all the formulations crospovidone at 10 mg/tab gives 99.1% drug release at end of 12th min. It was considered as optimized batch. The optimized batch was processed for all the evaluation parameter and stability studies. The final formulations were packed in blister package. Bangladesh J. Sci. Ind. Res. 48(2), 137-142, 2013 DOI: http://dx.doi.org/10.3329/bjsir.v48i2.15745


Author(s):  
Y. Shravan Kumar ◽  
R Gowthami ◽  
Sujitha H ◽  
Nagaraju T ◽  
Rajashekar M ◽  
...  

Sumatriptan succinate is a 5-HT1B/1D receptor agonist which has well established efficacy in treating migraine. The main objective of the study was to formulate Oral Fast Disintegrating Films (ODF) and Oral Fast Disintegrating Tablets (ODT) to achieve a better dissolution rate and further improving the bioavailability of the drug.  ODFs were prepared by solvent casting method using film forming polymers like HPMC – E15,5cps,50cps in different ratios & prepared batches of films were evaluated for the drug content, film thickness, disintegration time  and in vitro dissolution studies. Among the prepared formulation F7 containing HPMC – 50cps (drug: polymer ratios = 1:1) was found to be best formulations which releases 98.2±1.1of the drug within 17±0.02 sec. ODTs prepared by direct compression method using in different concentrations of super-disintegrants. The prepared formulation T12 (combination of disintegrants) containing CP + CCS (6%) was considered to be the best formulation, which releases up to 100±0.38% of the drug in 23±0.75 sec, respectively. Based on these results, it is suggested that ODFs have faster disintegration time and drug release than ODTs.  


2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Bhukya Nagaraju ◽  
B Ramu ◽  
S V Saibaba ◽  
B Rajkamal

<p>In the present work, an attempt has been made to develop gastro retentive floating tablets of Doxofylline<strong> .</strong>HPMC K4M and carbopol were used as controlled release polymers<strong>.</strong> All the formulations were prepared by direct compression method on 12 station rotary tablet punching machine. The blend of all the formulations showed god flow properties such as angle of repose, bulk density, tapped density. The prepared tablets were shown good post compression parameters and they passed all the quality control evaluation parameters as per I.P limits. FH 5 was the best optimized floating formulation because it released drug completely in 12hrs.It was also observed that the increasing concentration of polymers had a retarding effect on the drug release from the polymer matrices.</p>


Sign in / Sign up

Export Citation Format

Share Document