scholarly journals Evaluation of citrus germplasm for physico-chemical and morphological traits

2021 ◽  
Vol 9 (1) ◽  
pp. 423-429
Author(s):  
Wasif Rashid Mir ◽  
Ramesh Kumar Sadawarti ◽  
Anis Mirza
2016 ◽  
Vol 65 (1-2) ◽  
pp. 44-52
Author(s):  
Antonije Žunić ◽  
Slavica Vuković ◽  
Maria Fatima De Alpendurada ◽  
Sanja Lazić ◽  
Sonja Gvozdenac ◽  
...  

Summary By using biological assay in the laboratory were tested quality and impact of the water to the selected test plants: buckwheat (Fagopyrum esculentum) and cabbage (Brassica oleracea). Water was analyzed from two locations from the River Douro in Portugal. Physico-chemical analysis of general parameters in the water samples indicate that electrical conductivity and ammonium were detected in values exceeding MAC, according to Portuguese regulations on water quality. Also, in the analyzed samples of water in quantities that exceed the maximum allowable concentration values are: arsenic (As), selenium (Se), iron (Fe), magnesium (Mg). In tested samples several pharmaceuticals were detected. The obtained results indicate differences in tolerance of the test plants towards the quality of water. Physiological parameters (germination energy and germination) are not good indicators of water quality and more reliable can be considered some morphological traits (length, fresh and dry weight of root and shoot), that reacted in inhibition or stimulation, depending on water quality.


Author(s):  
Bohdan Svydnytskyi ◽  
Maria Paseka

The task of soil erosion degradation and melioration cultivation of dark grey podzolic light loamy soils of Goshchanske plateu was lighted. Detailed description of changes in their morphological traits physical and physico-chemical properties has been conducted. Key words: degradation, cultivation, anthropogenius transformation, melioration, gleization, drainage, key plats, structural coefficient, water-resistant aggregates.


Author(s):  
H. Gross ◽  
H. Moor

Fracturing under ultrahigh vacuum (UHV, p ≤ 10-9 Torr) produces membrane fracture faces devoid of contamination. Such clean surfaces are a prerequisite foe studies of interactions between condensing molecules is possible and surface forces are unequally distributed, the condensate will accumulate at places with high binding forces; crystallites will arise which may be useful a probes for surface sites with specific physico-chemical properties. Specific “decoration” with crystallites can be achieved nby exposing membrane fracture faces to water vopour. A device was developed which enables the production of pure water vapour and the controlled variation of its partial pressure in an UHV freeze-fracture apparatus (Fig.1a). Under vaccum (≤ 10-3 Torr), small container filled with copper-sulfate-pentahydrate is heated with a heating coil, with the temperature controlled by means of a thermocouple. The water of hydration thereby released enters a storage vessel.


2004 ◽  
Vol 71 ◽  
pp. 97-106 ◽  
Author(s):  
Mark Burkitt ◽  
Clare Jones ◽  
Andrew Lawrence ◽  
Peter Wardman

The release of cytochrome c from mitochondria during apoptosis results in the enhanced production of superoxide radicals, which are converted to H2O2 by Mn-superoxide dismutase. We have been concerned with the role of cytochrome c/H2O2 in the induction of oxidative stress during apoptosis. Our initial studies showed that cytochrome c is a potent catalyst of 2′,7′-dichlorofluorescin oxidation, thereby explaining the increased rate of production of the fluorophore 2′,7′-dichlorofluorescein in apoptotic cells. Although it has been speculated that the oxidizing species may be a ferryl-haem intermediate, no definitive evidence for the formation of such a species has been reported. Alternatively, it is possible that the hydroxyl radical may be generated, as seen in the reaction of certain iron chelates with H2O2. By examining the effects of radical scavengers on 2′,7′-dichlorofluorescin oxidation by cytochrome c/H2O2, together with complementary EPR studies, we have demonstrated that the hydroxyl radical is not generated. Our findings point, instead, to the formation of a peroxidase compound I species, with one oxidizing equivalent present as an oxo-ferryl haem intermediate and the other as the tyrosyl radical identified by Barr and colleagues [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503]. Studies with spin traps indicated that the oxo-ferryl haem is the active oxidant. These findings provide a physico-chemical basis for the redox changes that occur during apoptosis. Excessive changes (possibly catalysed by cytochrome c) may have implications for the redox regulation of cell death, including the sensitivity of tumour cells to chemotherapeutic agents.


Author(s):  
Angela Abruzzo ◽  
Alessandra Crispini ◽  
Cecilia Prata ◽  
Rosanna Adduci ◽  
Fiore Pasquale Nicoletta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document