scholarly journals Estimation of carbon dioxide assimilated in shoot biomass of mature Acacia seyal (Del.) Brenan and Eucalyptus microtheca (F.) Muell

2020 ◽  
Vol 7 (1) ◽  
pp. 14-19
Author(s):  
Hasabelrasoul Fadlelmula Mustafa ◽  
◽  
Bello Rufa′i Wali ◽  
Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 584-588 ◽  
Author(s):  
Lewis H. Ziska ◽  
Shaun Faulkner ◽  
John Lydon

Canada thistle was grown under field conditions in 2000 and 2003 at ambient and elevated (∼ 350 μmol mol−1above ambient) carbon dioxide [CO2] to assess how rising [CO2] alters growth, biomass allocation, and efficacy of the postemergent herbicide glyphosate. By the time of glyphosate application, approximately 2 mo after emergence, elevated CO2had resulted in significant increases in both root and shoot biomass. However, the relative positive effect of [CO2] was much larger for root, relative to shoot growth, during this period (2.5- to 3.3-fold vs. 1.2- to 1.4-fold, respectively) with a subsequent increase in root to shoot ratio. Glyphosate was applied at 2.24 kg ae ha−1in 2000 and 2003. Subjective classification of leaf damage in shoots after spraying indicated no significant difference in the extent of necrosis in aboveground tissue as a function of CO2concentration. After a 6-wk regrowth period, significant reductions in shoot and root biomass relative to unsprayed plots were observed under ambient [CO2]. However, the decrease in the ratio of sprayed to unsprayed biomass was significantly less at elevated relative to ambient [CO2] conditions for roots in both years, and no difference in shoot biomass was observed between sprayed and unsprayed plots for Canada thistle grown at elevated [CO2] in either year. The observed reduction in glyphosate efficacy at the enriched [CO2] treatment did not appear to be associated with differential herbicide uptake, suggesting that tolerance was simply a dilution effect, related to the large stimulation of root relative to shoot biomass at elevated [CO2]. Overall, the study indicates that carbon dioxide–induced increases in root biomass could make Canada thistle and other perennial weeds that reproduce asexually from belowground organs harder to control in a higher [CO2] world.


1993 ◽  
Vol 73 (4) ◽  
pp. 433-445 ◽  
Author(s):  
D. G. Maynard

The effect of hexazinone (applied as Velpar L.) on carbon dioxide (CO2) evolution, nitrogen (N), phosphorus (P), and sulfur (S) mineralization in a surface organic layer (L–H horizons) of a forest soil was followed during a 150-d laboratory incubation. Hexazinone was applied at recommended field rates equivalent to 2 and 4 kg a.i. ha−1 and at a higher rate, 8 kg a.i. ha−1. A bioassay determined that hexazinone at 4 and 8 kg a.i. ha−1 affected the root and shoot biomass of oats for up to 63 d after application. Hexazinone had no effect on CO2 evolution, ammonification, nitrification or net S mineralization in the L–H horizons. An increase in extractable P was found in the hexazinone-treated soils at the end of the incubation. Hexazinone applied at recommended field rates of 2 and 4 kg a.i. ha−1 would have little direct impact on nutrient-cycling processes in the L–H horizons of mixed-wood cutovers. Key words: Hexazinone, carbon dioxide evolution, nitrogen, phosphorus, sulfur, forest soils


Author(s):  
K. C. Tsou ◽  
J. Morris ◽  
P. Shawaluk ◽  
B. Stuck ◽  
E. Beatrice

While much is known regarding the effect of lasers on the retina, little study has been done on the effect of lasers on cornea, because of the limitation of the size of the material. Using a combination of electron microscope and several newly developed cytochemical methods, the effect of laser can now be studied on eye for the purpose of correlating functional and morphological damage. The present paper illustrates such study with CO2 laser on Rhesus monkey.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


2001 ◽  
Vol 7 (7) ◽  
pp. 789-796 ◽  
Author(s):  
L. H. Ziska ◽  
O. Ghannoum ◽  
J. T. Baker ◽  
J. Conroy ◽  
J. A. Bunce ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 319-319
Author(s):  
Naoto Sassa ◽  
Ryohei Hattori ◽  
Yoshinari Ono ◽  
Tokunori Yamamoto ◽  
Momokazu Gotoh

Sign in / Sign up

Export Citation Format

Share Document