scholarly journals On a Lorentz-Invariant Interpretation of Noncommutative Space-Time and Its Implications on Noncommutative QFT

2007 ◽  
Author(s):  
Anca Tureanu
2005 ◽  
Vol 20 (26) ◽  
pp. 6039-6049 ◽  
Author(s):  
XIN ZHANG

A toy model based upon the q-deformation description for studying the radiation spectrum of black hole is proposed. The starting point is to make an attempt to consider the space–time noncommutativity in the vicinity of black hole horizon. We use a trick that all the space–time noncommutative effects are ascribed to the modification of the behavior of the radiation field of black hole and a kind of q-deformed degrees of freedom are postulated to mimic the radiation particles that live on the noncommutative space–time, meanwhile the background metric is preserved as usual. We calculate the radiation spectrum of Schwarzschild black hole in this framework. The new distribution deviates from the standard thermal spectrum evidently. The result indicates that some correlation effect will be introduced to the system if the noncommutativity is taken into account. In addition, an infrared cutoff of the spectrum is the prediction of the model.


2019 ◽  
Vol 97 (12) ◽  
pp. 1317-1322
Author(s):  
Abeer Al-Modlej ◽  
Salwa Alsaleh ◽  
Hassan Alshal ◽  
Ahmed Farag Ali

Virtual black holes in noncommutative space–time are investigated using coordinate coherent state formalism such that the event horizon of a black hole is manipulated by smearing it with a Gaussian of width [Formula: see text], where θ is the noncommutativity parameter. Proton lifetime, the main associated phenomenology of the noncommutative virtual black holes, has been studied, first in four-dimensional space–time and then generalized to D dimensions. The lifetime depends on θ and the number of space–time dimensions such that it emphasizes on the measurement of proton lifetime as a potential probe for the microstructure of space–time.


2007 ◽  
Vol 19 (03) ◽  
pp. 273-305 ◽  
Author(s):  
DOROTHEA BAHNS ◽  
STEFAN WALDMANN

Localized noncommutative structures for manifolds with connection are constructed based on the use of vertical star products. The model's main feature is that two points that are far away from each other will not be subjected to a deviation from classical geometry while space-time becomes noncommutative for pairs of points that are close to one another.


2000 ◽  
Vol 15 (27) ◽  
pp. 4301-4323 ◽  
Author(s):  
GIOVANNI AMELINO-CAMELIA ◽  
SHAHN MAJID

Quantum group Fourier transform methods are applied to the study of processes on noncommutative Minkowski space–time [xi, t]=ιλxi. A natural wave equation is derived and the associated phenomena of in vacuo dispersion are discussed. Assuming the deformation scale λ is of the order of the Planck length one finds that the dispersion effects are large enough to be tested in experimental investigations of astrophysical phenomena such as gamma-ray bursts. We also outline a new approach to the construction of field theories on the noncommutative space–time, with the noncommutativity equivalent under Fourier transform to non-Abelianness of the "addition law" for momentum in Feynman diagrams. We argue that CPT violation effects of the type testable using the sensitive neutral-kaon system are to be expected in such a theory.


2003 ◽  
Vol 18 (33n35) ◽  
pp. 2525-2532 ◽  
Author(s):  
ALESSANDRO TORRIELLI

We improve the study of the lack of perturbative unitarity of noncommutative space-time quantum field theories derived from open string theory in electric backgrounds, enforcing the universality of the mechanism by which a tachyonic branch cut appears when the Seiberg-Witten limit freezes the string in an unstable vacuum. The main example is realized in the context of the on-shell four-tachyon amplitude of the bosonic string, and the dependence of the phenomenon on the brane-worldvolume dimension is analysed. We discuss the possibility of a proof in superstring theory, and finally mention the NCOS limit in this framework.


2005 ◽  
Vol 72 (6) ◽  
Author(s):  
C. Gonera ◽  
P. Kosiński ◽  
P. Maślanka ◽  
S. Giller

2016 ◽  
Vol 31 (16) ◽  
pp. 1650087 ◽  
Author(s):  
M. Dias ◽  
J. M. Hoff da Silva ◽  
E. Scatena

We show that the introduction of a minimal length in the context of noncommutative space–time gives rise (after some considerations) to higher-order theories. We then explicitly demonstrate how these higher-derivative theories appear as a generalization of the standard electromagnetism and general relativity by applying a consistent procedure that modifies the original Maxwell and Einstein–Hilbert actions. In order to set a bound on the minimal length, we compare the deviations from the inverse-square law with the potentials obtained in the higher-order theories and discuss the validity of the results. The introduction of a quantum bound for the minimal length parameter [Formula: see text] in the higher-order QED allows us to lower the actual limits on the parameters of higher-derivative gravity by almost half of their order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document