scholarly journals Elementary Thermal Operations

Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 52 ◽  
Author(s):  
Matteo Lostaglio ◽  
Álvaro M. Alhambra ◽  
Christopher Perry

To what extent do thermodynamic resource theories capture physically relevant constraints? Inspired by quantum computation, we define a set of elementary thermodynamic gates that only act on 2 energy levels of a system at a time. We show that this theory is well reproduced by a Jaynes-Cummings interaction in rotating wave approximation and draw a connection to standard descriptions of thermalisation. We then prove that elementary thermal operations present tighter constraints on the allowed transformations than thermal operations. Mathematically, this illustrates the failure at finite temperature of fundamental theorems by Birkhoff and Muirhead-Hardy-Littlewood-Polya concerning stochastic maps. Physically, this implies that stronger constraints than those imposed by single-shot quantities can be given if we tailor a thermodynamic resource theory to the relevant experimental scenario. We provide new tools to do so, including necessary and sufficient conditions for a given change of the population to be possible. As an example, we describe the resource theory of the Jaynes-Cummings model. Finally, we initiate an investigation into how our resource theories can be applied to Heat Bath Algorithmic Cooling protocols.

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 755
Author(s):  
Lea Kraemer ◽  
Lídia del Rio

How may we quantify the value of physical resources, such as entangled quantum states, heat baths or lasers? Existing resource theories give us partial answers; however, these rely on idealizations, like perfectly independent copies of states or exact knowledge of a quantum state. Here we introduce the general tool of “currencies” to quantify realistic descriptions of resources, applicable in experimental settings when we do not have perfect control over a physical system, when only the neighbourhood of a state or some of its properties are known, or when slight correlations cannot be ruled out. Currencies are a subset of resources chosen to quantify all the other resources—like Bell pairs in LOCC or a lifted weight in thermodynamics. We show that from very weak assumptions in the theory we can already find useful currencies that give us necessary and sufficient conditions for resource conversion, and we build up more results as we impose further structure. This work generalizes axiomatic approaches to thermodynamic entropy, work and currencies made of local copies. In particular, by applying our approach to the resource theory of unital maps, we derive operational single-shot entropies for arbitrary, non-probabilistic descriptions of resources.


2019 ◽  
Vol 109 (3) ◽  
pp. 996-1031 ◽  
Author(s):  
Simone Galperti

Persuaders often face the task of changing their listeners’ world-view, which may involve conveying evidence that disconfirms that view. It has been shown, however, that people are often reluctant to change their worldviews. These aspects of persuasion cannot be captured in the standard Bayesian framework. The paper identifies the constraints, opportunities, and trade-offs of persuading people to change worldview. It finds necessary and sufficient conditions under which it is optimal for persuaders to do so. It also shows when and how they conceal disconfirming evidence and take advantage of their listener’s existing worldview. (JEL D82, D83, D91)


1973 ◽  
Vol 95 (4) ◽  
pp. 362-367 ◽  
Author(s):  
J. R. Ort ◽  
H. R. Martens

Some fundamental theorems concerning the relationship between the junction structure of bond graphs and the effort and flow equations, are presented. Necessary and sufficient conditions are stipulated to guarantee the correct number of constraint equations. The structure and rank of the coefficient matrices of the effort and flow equations are examined. An orthogonality relationship between effort and flow equations is established. The development yields the result that the number of effort and flow equations corresponding to a causal assignment are sufficient and their coefficient matrices are of maximum rank.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2008 ◽  
pp. 134-151
Author(s):  
A. Shastitko ◽  
M. Ovchinnikov

The article proposes an approach to the analysis of social change and contributes to the clarification of concepts of economic policy. It deals in particular with the notion of "change of system". The author considers positive and normative aspects of the analysis of capitalist and socialist systems. The necessary and sufficient conditions for the system to be changed are introduced, their fulfillment is discussed drawing upon the historical and statistical data. The article describes both economic and political peculiarities of the transitional period in different countries, especially in Eastern Europe.


2020 ◽  
pp. 77-90
Author(s):  
V.D. Gerami ◽  
I.G. Shidlovskii

The article presents a special modification of the EOQ formula and its application to the accounting of the cargo capacity factor for the relevant procedures for optimizing deliveries when renting storage facilities. The specified development will allow managers to take into account the following process specifics in the format of a simulated supply chain when managing inventory. First of all, it will allow considering the most important factor of cargo capacity when optimizing stocks. Moreover, this formula will make it possible to find the optimal strategy for the supply of goods if, also, it is necessary to take into account the combined effect of several factors necessary for practice, which will undoubtedly affect decision-making procedures. Here we are talking about the need for additional consideration of the following essential attributes of the simulated cash flow of the supply chain: 1) time value of money; 2) deferral of payment of the cost of the order; 3) pre-agreed allowable delays in the receipt of revenue from goods sold. Developed analysis and optimization procedures have been implemented to models of this type that are interesting and important for a business. This — inventory management systems, the format of which is related to the special concept of efficient supply. We are talking about models where the presence of the specified delays for the outgoing cash flows allows you to pay for the order and the corresponding costs of the supply chain from the corresponding revenue on the re-order interval. Accordingly, the necessary and sufficient conditions are established based on which managers will be able to identify models of the specified type. The purpose of the article is to draw the attention of managers to real opportunities to improve the efficiency of inventory management systems by taking into account these factors for a simulated supply chain.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Sign in / Sign up

Export Citation Format

Share Document