scholarly journals Qubit-efficient entanglement spectroscopy using qubit resets

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 535
Author(s):  
Justin Yirka ◽  
Yiğit Subaşı

One strategy to fit larger problems on NISQ devices is to exploit a tradeoff between circuit width and circuit depth. Unfortunately, this tradeoff still limits the size of tractable problems since the increased depth is often not realizable before noise dominates. Here, we develop qubit-efficient quantum algorithms for entanglement spectroscopy which avoid this tradeoff. In particular, we develop algorithms for computing the trace of the n-th power of the density operator of a quantum system, Tr(ρn), (related to the Rényi entropy of order n) that use fewer qubits than any previous efficient algorithm while achieving similar performance in the presence of noise, thus enabling spectroscopy of larger quantum systems on NISQ devices. Our algorithms, which require a number of qubits independent of n, are variants of previous algorithms with width proportional to n, an asymptotic difference. The crucial ingredient in these new algorithms is the ability to measure and reinitialize subsets of qubits in the course of the computation, allowing us to reuse qubits and increase the circuit depth without suffering the usual noisy consequences. We also introduce the notion of effective circuit depth as a generalization of standard circuit depth suitable for circuits with qubit resets. This tool helps explain the noise-resilience of our qubit-efficient algorithms and should aid in designing future algorithms. We perform numerical simulations to compare our algorithms to the original variants and show they perform similarly when subjected to noise. Additionally, we experimentally implement one of our qubit-efficient algorithms on the Honeywell System Model H0, estimating Tr(ρn) for larger n than possible with previous algorithms.

2021 ◽  
Vol 2056 (1) ◽  
pp. 012059
Author(s):  
I N Balaba ◽  
G S Deryabina ◽  
I A Pinchuk ◽  
I V Sergeev ◽  
S B Zabelina

Abstract The article presents a historical overview of the development of the mathematical idea of a quantum computing model - a new computational strategy based on the postulates of quantum mechanics and having advantages over the traditional computational model based on the Turing machine; clarified the features of the operation of multi-qubit quantum systems, which ensure the creation of efficient algorithms; the principles of quantum computing are outlined and a number of efficient quantum algorithms are described that allow solving the problem of exponential growth of the complexity of certain problems.


2009 ◽  
Vol 16 (04) ◽  
pp. 407-412
Author(s):  
Hoshang Heydari

We construct a quantum gate entangler for multi-qubit states based on a selective phase rotation transform. In particular, we establish a relation between the quantum integral transform and the quantum gate entangler in terms of universal controlled gates for multi-qubit states. Our result gives an effective way of constructing topological and geometrical quantum gate entanglers for multipartite quantum systems, which could also lead to a construction of geometrical quantum algorithms.


2005 ◽  
pp. 1-13
Author(s):  
Th. Beth ◽  
M. Grassl ◽  
D. Janzing ◽  
M. Rötteler ◽  
P. Wocjan ◽  
...  

2018 ◽  
Vol 32 (25) ◽  
pp. 1850276 ◽  
Author(s):  
Ludmila Praxmeyer ◽  
Konstantin G. Zloshchastiev

The Wigner–Weyl transform and phase space formulation of a density matrix approach are applied to a non-Hermitian model which is quadratic in positions and momenta. We show that in the presence of a quantum environment or reservoir, mean lifetime and decay constants of quantum systems do not necessarily take arbitrary values, but could become functions of energy eigenvalues and have a discrete spectrum. It is demonstrated also that a constraint upon mean lifetime and energy appears, which is used to derive the resonance conditions at which long-lived states occur. The latter indicate that quantum dissipative effects do not always lead to decay but, under certain conditions, can support stability of a system.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Enrico Fontana ◽  
Nathan Fitzpatrick ◽  
David Muñoz Ramo ◽  
Ross Duncan ◽  
Ivan Rungger

2005 ◽  
Vol 12 (01) ◽  
pp. 65-80 ◽  
Author(s):  
Walter T. Strunz

We determine the dynamics of the total state of a system and environment for an open system model, at finite temperature. Based on a partial Husimi representation, our framework describes the full dynamics very efficiently through equations in the Hilbert space of the open system only. We briefly review the zero-temperature case and present the corresponding new finite temperature theory, within the usual Born-Markov approximation. As we will show, from a reduced point of view, our approach amounts to the derivation of a stochastic Schrödinger equation description of the dynamics. We show how the reduced density operator evolves according to the expected (finite temperature) master equation of Lindblad form.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 422
Author(s):  
Lena Funcke ◽  
Tobias Hartung ◽  
Karl Jansen ◽  
Stefan Kühn ◽  
Paolo Stornati

Parametric quantum circuits play a crucial role in the performance of many variational quantum algorithms. To successfully implement such algorithms, one must design efficient quantum circuits that sufficiently approximate the solution space while maintaining a low parameter count and circuit depth. In this paper, develop a method to analyze the dimensional expressivity of parametric quantum circuits. Our technique allows for identifying superfluous parameters in the circuit layout and for obtaining a maximally expressive ansatz with a minimum number of parameters. Using a hybrid quantum-classical approach, we show how to efficiently implement the expressivity analysis using quantum hardware, and we provide a proof of principle demonstration of this procedure on IBM's quantum hardware. We also discuss the effect of symmetries and demonstrate how to incorporate or remove symmetries from the parametrized ansatz.


2008 ◽  
Vol 8 (8&9) ◽  
pp. 834-859
Author(s):  
B. Furrow

This paper's aim is to explore improvements to, and applications of, a fundamental quantum algorithm invented by Grover\cite{grover}. Grover's algorithm is a basic tool that can be applied to a large number of problems in computer science, creating quantum algorithms that are polynomially faster than fastest known and fastest possible classical algorithms that solve the same problems. Our goal in this paper is to make these techniques readily accessible to those without a strong background in quantum physics: we achieve this by providing a set of tools, each of which makes use of Grover's algorithm or similar techniques, which can be used as subroutines in many quantum algorithms.}{The tools we provide are carefully constructed: they are easy to use, and in many cases they are asymptotically faster than the best tools previously available. The tools we build on include algorithms by Boyer, Brassard, Hoyer and Tapp, Buhrman, Cleve, de Witt and Zalka and Durr and Hoyer.}{After creating our tools, we create several new quantum algorithms, each of which is faster than the fastest known deterministic classical algorithm that accomplishes the same aim, and some of which are faster than the fastest possible deterministic classical algorithm. These algorithms solve problems from the fields of graph theory and computational geometry, and some employ dynamic programming techniques. We discuss a breadth-first search that is faster than $\Theta(\text{edges})$ (the classical limit) in a dense graph, maximum-points-on-a-line in $O(N^{3/2}\lg N)$ (faster than the fastest classical algorithm known), as well as several other algorithms that are similarly illustrative of solutions in some class of problem. Through these new algorithms we illustrate the use of our tools, working to encourage their use and the study of quantum algorithms in general.


2021 ◽  
Vol 38 (8) ◽  
pp. 080301
Author(s):  
Huan-Yu Liu ◽  
Tai-Ping Sun ◽  
Yu-Chun Wu ◽  
Guo-Ping Guo

Sign in / Sign up

Export Citation Format

Share Document