scholarly journals Dynamics of air temperature in the main types of mountain Crimea regional ecosystems

2021 ◽  
Vol 29 (1) ◽  
pp. 39-54
Author(s):  
Roman V. Gorbunov ◽  
Vladimir A. Tabunshchik ◽  
Tatyana Yu. Gorbunova ◽  
Maria S. Safonova

Climate change in Crimea is characterized by spatial heterogeneity in the displacement of air temperature fields, due to the influence of regional and local factors. There are currently no works devoted to the study of the reaction of regional ecosystems to changes in air temperature in Crimea. Based on open databases of reanalysis, geoinformation modeling the results of studies of the dynamics of air temperature in the main types of ecosystems of the Mountain Crimea under conditions of climate change are presented. For each circulation epoch and period of the Northern Hemisphere, maps of average annual temperatures were obtained along the landscape contours of the Crimean Peninsula. A map of the standard deviation of temperature within the landscape contours was made. For key areas, the mean annual air temperature, standard deviation, and factorial entropy were calculated. The main regularities of air temperature dynamics in the main types of Mountain Crimea ecosystems with the change of circulation epochs and periods of the Northern Hemisphere are revealed. Based on the analysis of the dynamics of the standard deviation and factor entropy, the role of changes in air temperature in the formation of strategies for the development or stabilization of the main types of regional ecosystems in Mountain Crimea is shown.

2006 ◽  
Vol 19 (11) ◽  
pp. 2617-2630 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall

Abstract In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.


2016 ◽  
Vol 12 (3) ◽  
pp. 603-621 ◽  
Author(s):  
NABAMITA DUTTA ◽  
CLAUDIA R. WILLIAMSON

AbstractCan foreign aid help free the press? Aid may boost press freedom by incentivizing government to reduce media regulations and provide financial support for infrastructure. Alternatively, foreign aid may prevent press freedom by expanding the role of the state and promoting government over private enterprises. We contend that the magnitude of foreign aid's influence is conditional on the existence of democratic checks. Using panel data from 1994 to 2010, we find evidence suggesting that aid significantly increases press freedom in democracies but insignificantly relates to press freedom in autocracies. Collectively, the results suggest that a standard deviation increase in aid to a country at the mean level of democracy increases press freedom by approximately a 1/20th standard deviation. Overall, the findings suggest that donors should be cautious as most aid recipients are not democratic and aid leads to only relatively small marginal improvements in press freedom.


2017 ◽  
Vol 9 (1) ◽  
pp. 74-88 ◽  
Author(s):  
Huaijun Wang ◽  
Yingping Pan ◽  
Yaning Chen

Abstract This investigation examined effects of climate change, measured as annual, seasonal, and monthly air temperature and precipitation from 1958 to 2010, on water resources (i.e., runoff) in the Bosten Lake Basin. Additionally, teleconnections of hydrological changes to large-scale circulation indices including El Nino Southern Oscillation (ENSO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Tibetan High (XZH), westerly circulation index (WI), and northern hemisphere polar vortex area index (VPA) were analyzed in our study. The results showed the following. (1) Annual and seasonal air temperature increased significantly in the Bosten Lake Basin. Precipitation exhibited an increasing trend, while the significance was less than that of temperature. Abrupt changes were observed in 1996 in mountain temperature and in 1985 in plain temperature. (2) Runoff varied in three stages, decreasing before 1986, increasing from 1987 to 2003, and decreasing after 2003. (3) Precipitation and air temperature have significant impacts on runoff. The hydrological processes in the Bosten Lake Basin were (statistically) significantly affected by the northern hemisphere polar vortex area index (VPA) and the Tibetan High (XZH). The results of this study are good indicators of local climate change, which can enhance human mitigation of climate warming in the Bosten Lake Basin.


2014 ◽  
Vol 27 (14) ◽  
pp. 5396-5410 ◽  
Author(s):  
Nicholas R. Cavanaugh ◽  
Samuel S. P. Shen

Abstract The first four statistical moments and their trends are calculated for the average daily surface air temperature (SAT) from 1950 to 2010 using the Global Historical Climatology Network–Daily station data for each season relative to the 1961–90 climatology over the Northern Hemisphere. Temporal variation of daily SAT probability distributions are represented as generalized linear regression coefficients on the mean, standard deviation, skewness, and kurtosis calculated for each 10-yr moving time window from 1950–59 to 2001–10. The climatology and trends of these statistical moments suggest that daily SAT probability distributions are non-Gaussian and are changing in time. The climatology of the first four statistical moments has distinct spatial patterns with large coherent structure for mean and standard deviation and relatively smaller and more regionalized patterns for skewness and kurtosis. The linear temporal trends from 1950 to 2010 of the first four moments also have coherent spatial patterns. The linear temporal trends in the characterizing statistical moments are statistically significant at most locations and have differing spatial patterns for different moments. The regionalized variations specific to higher moments may be related to the climate dynamics that contribute to extremes. The nonzero skewness and kurtosis makes this detailed documentation on the higher statistical moments useful for quantifying climate changes and assessing climate model uncertainties.


2020 ◽  
pp. 120-124
Author(s):  
Евгений Александрович Рыбалко ◽  
Наталья Валентиновна Баранова ◽  
Виктория Юрьевна Борисова ◽  
Валерий Семенович Петров

В статье приведен анализ метеорологической информации по средней температуре воздуха за вегетационный период на территории Крымского полуострова. Рассчитано среднее многолетнее значение в точках расположения метеостанций с длинным рядом метеонаблюдений на территории Крымского полуострова. При расчетах использовали многолетние данные за 30 лет по 17 метеостанциям Крымского полуострова. Для моделирования пространственного распределения величины средней температуры воздуха на первом этапе также была выбрана глобальная климатическая модель WorldClim 2.0. На её основе рассчитаны величины исследуемого показателя для опорных точек. Произведена корректировка данных модели WorldClim 2.0 путём прибавления к результатам расчёта поправки 0,99, что несколько повысило точность моделирования. Составлена также линейная многофакторная модель, учитывающая географическую широту местности и абсолютную высоту над уровнем моря. Установлено, что в зависимости от географического положения метеостанции значения средних многолетних температур воздуха составляют от 17,9 °С (Белогорск) до 20,0 °С (Феодосия, Ялта). Проанализированы при помощи технологий геоинформационного моделирования закономерности пространственного варьирования величины средней температуры. В результате проведенного анализа были получены модели, описывающие данные закономерности. С помощью полученных моделей, разработана цифровая крупномасштабная картографическая модель пространственного распределения величины средней температуры воздуха, на основе которой на территории Крымского полуострова выделено 4 зоны. Разработанная модель, в сочетании с современными геоинформационными технологиями дает возможность автоматизировать анализ степени пригодности территории для возделывания винограда. The article provides the analysis of meteorological information of the mean air temperature for the growing season on the territory of the Crimean Peninsula. The long-term mean value in the points of weather station locations with a long series of weather observations on the territory of the Crimean Peninsula was calculated. For calculations we used the long-term data for 30 years on 17 weather stations of the Crimean Peninsula. To simulate the spatial distribution of the mean air temperature value at the first stage, the WorldClim 2.0 global climate model was also selected. The values of the studied parameter for reference points were calculated on its basis. The data of the WorldClim 2.0 model was adjusted by adding an error correction of 0.99 to the results of calculation, which slightly increased the modeling accuracy. A linear multivariate model was also compiled, taking into account the geographical latitude of the terrain and the absolute height above sea level. It was established that, depending on the geographical location of the weather station, the values of long-term mean air temperatures range from 17.9 ° C (Belogorsk) to 20.0 ° C (Feodosia, Yalta). The patterns of spatial variation of the mean temperature were analyzed using the technologies of geoinformation modeling. Models describing these patterns were obtained as a result of the analysis. Using the models received, a digital large-scale cartographic model of the spatial distribution of the mean air temperature was developed. On its basis 4 zones on the territory of the Crimean Peninsula were allocated. The developed model, in combination with modern geoinformation technologies, makes it possible to automate the analysis of fitness degree of the territory for grapes cultivating.


2013 ◽  
Vol 6 (3) ◽  
pp. 177-182

In the present study, the spatial and temporal surface air temperature variability for the Northern Hemisphere has been examined, for the period 1900-1996. Factor Analysis has been applied to 5o Latitude x 10o Longitude grid box data covering the area from almost the equator to 70o N. These data are anomalies of the mean annual air temperature from the respective mean values of the period 1961- 1990. The analysis showed that, mainly 20 regions were determined in the Northern Hemisphere with significantly covariant air temperature time series. The comparison of the trends of the mean annual surface air temperature time series of these regions, revealed such common characteristics as the minimum of the first decade of the 20th century and the recent years warming. The results of this study are also compared to the respective results of a former study in which data for the last half of the century (1948-1996) have been analyzed. The findings extracted indicate the stability of climate distribution in Northern Hemisphere during the 20th century.


2017 ◽  
Vol 11 (1) ◽  
pp. 407-426 ◽  
Author(s):  
Owen King ◽  
Duncan J. Quincey ◽  
Jonathan L. Carrivick ◽  
Ann V. Rowan

Abstract. Region-wide averaging of Himalayan glacier mass change has masked any catchment or glacier-scale variability in glacier recession; thus the role of a number of glaciological processes in glacier wastage remains poorly understood. In this study, we quantify mass loss rates over the period 2000–2015 for 32 glaciers across the Everest region and assess how future ice loss is likely to differ depending on glacier hypsometry. The mean mass balance of all 32 glaciers in our sample was −0.52 ± 0.22 m water equivalent (w.e.) a−1. The mean mass balance of nine lacustrine-terminating glaciers (−0.70 ± 0.26 m w.e. a−1) was 32 % more negative than land-terminating, debris-covered glaciers (−0.53 ± 0.21 m w.e. a−1). The mass balance of lacustrine-terminating glaciers is highly variable (−0.45 ± 0.13 to −0.91 ± 0.22 m w.e. a−1), perhaps reflecting glacial lakes at different stages of development. To assess the importance of hypsometry on glacier response to future temperature increases, we calculated current (Dudh Koshi – 0.41, Tama Koshi – 0.43, Pumqu – 0.37) and prospective future glacier accumulation area Ratios (AARs). IPCC AR5 RCP 4.5 warming (0.9–2.3 °C by 2100) could reduce AARs to 0.29 or 0.08 in the Tama Koshi catchment, 0.27 or 0.17 in the Dudh Koshi catchment and 0.29 or 0.18 in the Pumqu catchment. Our results suggest that glacial lake expansion across the Himalayas could expedite ice mass loss and the prediction of future contributions of glacial meltwater to river flow will be complicated by spatially variable glacier responses to climate change.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ming-jin Zhan ◽  
Lingjun Xia ◽  
Longfei Zhan ◽  
Yuanhao Wang

Trends in soil temperature are important but rarely reported indicators of climate change. Based on daily air and soil temperatures (depth: 0, 20, 80, and 320 cm) recorded at the Nanchang Weather Station (1961–2018), this study investigated the variation trend, abrupt changes, and years of anomalous annual and seasonal mean air and soil temperatures. The differences and relationships between annual air and soil temperatures were also analyzed. The results showed close correlations between air temperature and soil temperature at different depths. Annual and seasonal mean air and soil temperatures mainly displayed significant trends of increase over the past 58 years, although the rise of the mean air temperature and the mean soil temperature was asymmetric. The rates of increase in air temperature and soil temperature (depth: 0, 20, and 80 cm) were most obvious in spring; the most significant increase in soil temperature at the depth of 320 cm was in summer. Mean soil temperature displayed a decreasing trend with increasing soil depth in both spring and summer. Air temperature was lower than the soil temperature at depths of 0 and 20 cm but higher than the soil temperature at depths of 80 and 320 cm in spring and summer. Mean ground temperature had a rising trend with increasing soil depth in autumn and winter. Air temperature was lower than the soil temperature at all depths in autumn and winter. Years with anomalously low air temperature and soil temperature at depths of 0, 20, 80, and 320 cm were relatively consistent in winter. Years with anomalous air and soil temperatures (depths: 0, 20, and 80 cm) were generally consistent; however, the relationship between air temperature and soil temperature at 320 cm depth was less consistent. The findings provide a basis for understanding and assessing climate change impact on terrestrial ecosystems.


Sign in / Sign up

Export Citation Format

Share Document