Anti-cancer activity of quercetin, gallic acid, and ellagic acid against hepg2 and hct 116 cell lines: in vitro

Author(s):  
AHMED ABD-RABOU A ◽  
AZIZA SHALBY B ◽  
HANAA AHMED H
2021 ◽  
Vol 17 ◽  
Author(s):  
Rania Helmy Abd El-Hameed ◽  
Samar Said Fatahala ◽  
Amira Ibrahim Sayed

Background: Thiobezimidazoles reveal various pharmacological activities due to similarities with many natural and synthetic molecules, they can easily interact with biomolecules of living systems. Objective: A series of substituted 2-thiobezimidazoles has been synthesized .Twelve final compounds were screened for in vitro anti-cancer activities against sixty different cell-lines. Methods: The spectral data of the synthesized compounds were characterized. Docking study for active anticancer compounds and CDK2/CyclinA2 Kinase assay against standard reference; Imatinib were performed. Results: Two compounds (3c&3l) from the examined series revealed effective antitumor activity in vitro against two-cancer cell lines (Colon Cancer (HCT-116) and Renal Cancer (TK-10). The docking study of synthesized molecules discovered a requisite binding pose in CDK-ATP binding pocket. 3c &3l were promoted in the CDK2/CyclinA2 Kinase assay against standard reference Imatinib. Conclusion: Against all tested compounds ; two compounds 3c &3l were found active against two types of cell-lines.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rohina Bashir ◽  
Ovais Zargar ◽  
Qazi Parvaiz ◽  
Rabia Hamid

Background: Cancer is one of the major problems at present, to which vast research is being dedicated to find effective remedy. Medicinal plants are endowed with numerous molecules that could be effective in multiple diseases including cancer. Thymus linearis, being rich in phenols, terpenoid, and flavonoids have potential to provide anti-cancer entities. Methods: The extracts of Thymus linearis were investigated for in vitro anticancer activity using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay on a panel of cancer cell lines. The cellular and nuclear morphology was studied using microscopic techniques. Agarose gel electrophoresis was used for DNA fragmentation analysis. Protein expression was determined by western-blotting. LC-MS was used for phytochemical identification. Results: Among all the extracts, Thymus linearis methanolic (TLM) extract was found to exhibit antiproliferative activity on cell lines to varied degrees. TLM was found to be most potent against HCT-116 with an IC50 of 158μg/ml after 48hrs treatment, while being nontoxic to HEK-293 and FR-2 cells under similar concentrations. TLM decreased clonogenic potential of HCT-116 cells. It induced cell shrinkage, membrane blebbing and nuclear fragmentation characteristic of apoptotic in a dose dependent manner in HCT-116 cells. Prominent internucleosomal DNA cleavage was observed in HCT-116 cells after 48hrs TLM treatment. Western blot analysis revealed the up regulation of expression of Bax, caspases 9 and caspases 3 and downregulation of Bcl-2 proteins. The LC-MS data revealed the presence of Salvianolic acid H, Synparvolide C, Thymuside A and Jasmonic acid; 12-Hydroxy, O-β-D-glucopyranoside and polyphenolic flavonoids to which antiproliferative activity can be attributed. Conclusion: The results suggest that Thymus linearis methanolic extract could be valuable source of anti-cancer agents.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1803
Author(s):  
Priyanka Paul ◽  
Partha Biswas ◽  
Dipta Dey ◽  
Abu Saim Mohammad Saikat ◽  
Md. Aminul Islam ◽  
...  

Background: “Dimocarpus longan Lour” is a tropical and subtropical evergreen tree species mainly found in China, India, and Thailand; this plant, found naturally in Bangladesh, even locally, is used as “kaviraj” medication for treating different diseases, such as gastrointestinal disorders, wounds, fever, snake bites, menstrual problem, chickenpox, bone fractures, neurological disorders, and reproductive health. Different parts of this plant, especially juice pulp, pericarp, seeds, leaves, and flowers, contain a diverse group of botanical phytocompounds, and nutrient components which are directly related to alleviating numerous diseases. This literature-based review provides the most up-to-date data on the ethnomedicinal usages, phytochemical profiling, and bio-pharmacological effects of D. longan Lour based on published scientific articles. Methodology: A literature-based review was conducted by collecting information from various published papers in reputable journals and cited organizations. ChemDraw, a commercial software package, used to draw the chemical structure of the phytochemicals. Results: Various phytochemicals such as flavonoids, tannins, and polyphenols were collected from the various sections of the plant, and other compounds like vitamins and minerals were also obtained from this plant. As a treating agent, this plant displayed many biologicals activities, such as anti-proliferative, antioxidant, anti-cancer, anti-tyrosinase, radical scavenging activity, anti-inflammatory activity, anti-microbial, activation of osteoblast differentiation, anti-fungal, immunomodulatory, probiotic, anti-aging, anti-diabetic, obesity, neurological issues, and suppressive effect on macrophages cells. Different plant parts have displayed better activity in different disease conditions. Still, the compounds, such as gallic acid, ellagic acid, corilagin acid, quercetin, 4-O-methyl gallic acid, and (-)-epicatechin showed better activity in the biological system. Gallic acid, corilagin, and ellagic acid strongly exhibited anti-cancer activity in the HepG2, A549, and SGC 7901 cancer cell lines. Additionally, 4-O-methyl gallic acid and (-)-epicatechin have displayed outstanding antioxidant activity as well as anti-cancer activity. Conclusion: This plant species can be considered an alternative source of medication for some diseases as it contains a potential group of chemical constituents.


2019 ◽  
Vol 224 ◽  
pp. 328-333 ◽  
Author(s):  
Sathyaraj Weslen Vedakumari ◽  
Rethinam Senthil ◽  
Sathiya Sekar ◽  
Chidambaram Saravana Babu ◽  
Thotapalli Parvathaleswara Sastry

2015 ◽  
Vol 02 (01) ◽  
pp. 08-13
Author(s):  
Chandra S Kothapalli Banoth ◽  
Devanna Nayakanti ◽  
Venkata.Naga Anantha ◽  
Sandhya R Nandyalac ◽  
Sreenivasa K Oruganti ◽  
...  

2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 104-104 ◽  
Author(s):  
Paul Toren ◽  
Steven Pham ◽  
Soojin Kim ◽  
Hans Adomat ◽  
Amina Zoubeidi ◽  
...  

104 Background: Castrate resistant prostate cancer (CRPC) continues to be sensitive to anti-androgen therapy as evidenced by the recent successes of abiraterone acetate (AA) and enzalutamide (ENZ). VT-464 is a novel, non-steroidal, small molecule CYP17A1 inhibitor with selectivity for the lyase activity of this dual enzyme. The objective of this study was to evaluate the anti-cancer activity of VT-464 compared to AA in CRPC in vitro models that are ENZ-responsive and ENZ-resistant and in an ENZ-resistant xenograft model. Methods: In vitro studies used the human CRPC, C4-2, and ENZ-resistant cell lines, MR49C and MR49F cells, in androgen-free media. AR transcriptional activity was assessed by probasin luciferase. AR-related and steroidogenesis pathways were assessed by western blot and/or qRT-PCR. A MR49F xenograft model in castrate mice compared oral VT-464 treatment to vehicle and AA. Steroid concentrations were measured using LC-MS chromatography. Results: VT-464 demonstrated a greater decrease in AR transactivation compared to AA in C4-2 and both ENZ-resistant cell lines. A greater decrease in AR-dependent gene transcription occurred with VT-464 treatment compared to AA in all cell lines. Prostate-specific antigen (PSA) protein levels in vitro were also lower with VT-464. Gene transcripts StAR, CYP17A1, HSD17B3 and SRD5A1 increased following treatment with VT-464 both in vitro and in vivo. A greater increase was seen with VT-464 treatment compared to AA. In vivo results demonstrated greater tumor growth inhibition and decreased serum PSA levels in mice treated with oral VT-464 compared to AA. Steroid analysis revealed lower testosterone (T) and dihydrotestosterone (DHT) concentrations in C4-2 cells with VT-464 treatment compared to AA. In vivo, the intra-tumoral DHT and T levels were significantly lower in response to VT-464 or AA compared to vehicle, with the greatest decrease seen with VT-464. Conclusions: The selective CYP17 inhibitor VT-464 demonstrated anti-cancer activity in pre-clinical models of CRPC, lowering intratumoral T and DHT concentrations significantly in castrate mice. These results suggest greater androgen suppression and inhibition of AR axis signaling by VT-464 than by AA.


Sign in / Sign up

Export Citation Format

Share Document