scholarly journals Twitter Sentiment Analysis Using Different Machine Learning and Feature Extraction Techniques

2021 ◽  
Vol 24 (3) ◽  
pp. 50-54
Author(s):  
Mohammad W.Habib ◽  
◽  
Zainab N. Sultani ◽  

Twitter is considered a significant source of exchanging information and opinion in today's business. Analysis of this data is critical and complex due to the size of the dataset. Sentiment Analysis is adopted to understand and analyze the sentiment of such data. In this paper, a Machine learning approach is employed for analyzing the data into positive or negative sentiment (opinion). Different arrangements of preprocessing techniques are applied to clean the tweets, and various feature extraction methods are used to extract and reduce the dimension of the tweets' feature vector. Sentiment140 dataset is used, and it consists of sentiment labels and tweets, so supervised machine learning models are used, specifically Logistic Regression, Naive Bayes, and Support Vector Machine. According to the experimental results, Logistic Regression was the best amongst other models with all feature extraction techniques.

Author(s):  
Neelam Mukhtar ◽  
Mohammad Abid Khan

From the last decade, Sentiment Analysis of languages such as English and Chinese are particularly the focus of attention but resource poor languages such as Urdu are mostly ignored by the research community, which is focused in this research. After acquiring data from various blogs of about 14 different genres, the data is being annotated with the help of human annotators. Three well-known classifiers, that is, Support Vector Machine, Decision tree and [Formula: see text]-Nearest Neighbor ([Formula: see text]-NN) are tested, their outputs are compared and their results are ultimately improved in several iterations after taking a number of steps that include stop words removal, feature extraction, identification and extraction of important features. extraction. Initially, the performance of the classifiers is not satisfactory as the accuracy achieved by all the three is below 50%. Ensemble of classifiers is also tried but the results are not fruitful (in terms of high accuracy). The results are analyzed carefully and improvements are made including feature extraction that raised the performance of these classifiers to a satisfactory level. It is further concluded that [Formula: see text]-NN is performing better than Support Vector Machine and Decision tree in terms of accuracy, precision, recall and [Formula: see text]-measure.


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


2021 ◽  
Vol 11 (10) ◽  
pp. 4443
Author(s):  
Rokas Štrimaitis ◽  
Pavel Stefanovič ◽  
Simona Ramanauskaitė ◽  
Asta Slotkienė

Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).


Author(s):  
Sarmad Mahar ◽  
Sahar Zafar ◽  
Kamran Nishat

Headnotes are the precise explanation and summary of legal points in an issued judgment. Law journals hire experienced lawyers to write these headnotes. These headnotes help the reader quickly determine the issue discussed in the case. Headnotes comprise two parts. The first part comprises the topic discussed in the judgment, and the second part contains a summary of that judgment. In this thesis, we design, develop and evaluate headnote prediction using machine learning, without involving human involvement. We divided this task into a two steps process. In the first step, we predict law points used in the judgment by using text classification algorithms. The second step generates a summary of the judgment using text summarization techniques. To achieve this task, we created a Databank by extracting data from different law sources in Pakistan. We labelled training data generated based on Pakistan law websites. We tested different feature extraction methods on judiciary data to improve our system. Using these feature extraction methods, we developed a dictionary of terminology for ease of reference and utility. Our approach achieves 65% accuracy by using Linear Support Vector Classification with tri-gram and without stemmer. Using active learning our system can continuously improve the accuracy with the increased labelled examples provided by the users of the system.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


Author(s):  
Dimple Chehal ◽  
Parul Gupta ◽  
Payal Gulati

Sentiment analysis of product reviews on e-commerce platforms aids in determining the preferences of customers. Aspect-based sentiment analysis (ABSA) assists in identifying the contributing aspects and their corresponding polarity, thereby allowing for a more detailed analysis of the customer’s inclination toward product aspects. This analysis helps in the transition from the traditional rating-based recommendation process to an improved aspect-based process. To automate ABSA, a labelled dataset is required to train a supervised machine learning model. As the availability of such dataset is limited due to the involvement of human efforts, an annotated dataset has been provided here for performing ABSA on customer reviews of mobile phones. The dataset comprising of product reviews of Apple-iPhone11 has been manually annotated with predefined aspect categories and aspect sentiments. The dataset’s accuracy has been validated using state-of-the-art machine learning techniques such as Naïve Bayes, Support Vector Machine, Logistic Regression, Random Forest, K-Nearest Neighbor and Multi Layer Perceptron, a sequential model built with Keras API. The MLP model built through Keras Sequential API for classifying review text into aspect categories produced the most accurate result with 67.45 percent accuracy. K- nearest neighbor performed the worst with only 49.92 percent accuracy. The Support Vector Machine had the highest accuracy for classifying review text into aspect sentiments with an accuracy of 79.46 percent. The model built with Keras API had the lowest 76.30 percent accuracy. The contribution is beneficial as a benchmark dataset for ABSA of mobile phone reviews.


Author(s):  
Prayag Tiwari ◽  
Brojo Kishore Mishra ◽  
Sachin Kumar ◽  
Vivek Kumar

Sentiment Analysis intends to get the basic perspective of the content, which may be anything that holds a subjective supposition, for example, an online audit, Comments on Blog posts, film rating and so forth. These surveys and websites might be characterized into various extremity gatherings, for example, negative, positive, and unbiased keeping in mind the end goal to concentrate data from the info dataset. Supervised machine learning strategies group these reviews. In this paper, three distinctive machine learning calculations, for example, Support Vector Machine (SVM), Maximum Entropy (ME) and Naive Bayes (NB), have been considered for the arrangement of human conclusions. The exactness of various strategies is basically inspected keeping in mind the end goal to get to their execution on the premise of parameters, e.g. accuracy, review, f-measure, and precision.


Sign in / Sign up

Export Citation Format

Share Document