scholarly journals VARIATION OF CUTTING PARAMETERS IN THE PROCESS OF TURNING AISI 4340 STEEL ON SURFACE ROUGHNESS

SINERGI ◽  
2019 ◽  
Vol 23 (2) ◽  
pp. 139
Author(s):  
M. Sobron Yamin Lubis ◽  
Erwin Siahaan ◽  
Steven Darmawan ◽  
Adianto Adianto ◽  
Ronald Ronald

In the metal machining process, cutting speed and feed rate are cutting parameters that affect the surface quality of the workpiece produced. The use of improper cutting parameters can cause the workpiece surface to be rough, and the cutting toolage to be shorter. This study was conducted to determine the effect of cutting parameters and the use of carbide tools on the surface roughness of metal steel workpieces. The research was carried out using the experimental method of AISI 4340 steel metal workpiece turning using cutting tool coated. Five variations of cutting speed used are: 140 m/min, 150 m/min, 160 m/min, 170 m/min, 180 m/min and three variations in feed rate: 0.25 mm/rev, 0.3 mm/rev, 0.35 mm/rev. After the turning process, the surface roughness of the workpiece is measured using a surface tester. From the results of the study, it was found that the surface roughness value was directly proportional to the feed rate and inversely proportional to the cutting speed. The smallest surface roughness value is 9.56 μm on cutting speed 180 m / min, and feed rate is 0.25 mm/rev. 

Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2013 ◽  
Vol 837 ◽  
pp. 128-134 ◽  
Author(s):  
Gheorghe Mustea ◽  
Gheorghe Brabie

The use of magnesium alloys in construction of different components of the mechanical systems (such: cars, aerospace vehicles, medical equipment etc.) is very efficient not only because it leads to reduction of the systems weight but also because it leads to reduction or elimination of the environment polluting and to reduction of the energy consumption. Generally, the main factors that influence the quality of the machined surfaces are as follows: cutting parameters, material properties, geometry of the tools, cooling liquids and lubricants, physical and mechanical properties of the subsurface layers etc. Among the above mentioned factors, cutting parameters are the factors that strongly influence the quality of the machined surfaces. The present paper analysis the results of the experimental investigation performed to determine the influence of cutting parameters (cutting speed, feed rate and cutting depth) on the surface quality machined by turning the AZ61 magnesium alloy. The main characteristics of the machined surface quality analyzed in experimental investigation were the surface roughness and hardness. The main conclusions resulted from the results analysis were as follows: the decrease of the feed rate led to surface roughness decrease and hardness increase; the increase of the cutting speed also led to an improved surface quality.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Kaladhar

PurposeThe present study spotlights the single and multicriteria decision-making (MCDM) methods to determine the optimal machining conditions and the predictive modeling for surface roughness (Ra) and cutting tool flank wear (VB) while hard turning of AISI 4340 steel (35 HRC) under dry environment.Design/methodology/approachIn this study, Taguchi L16 design of experiments methodology was chosen. The experiments were performed under dry machining conditions using TiSiN-TiAlN nanolaminate PVD-coated cutting tool on which Taguchi and responses surface methodology (RSM) for single objective optimization and MCDM methods like the multi-objective optimization by ratio analysis (MOORA) were applied to attain optimal set of machining parameters. The predictive models for each response and multiresponse were developed using RSM-based regression analysis. S/N ratios, analysis of variance (ANOVA), Pareto diagram, Tukey's HSD test were carried out on experimental data for profound analysis.FindingsOptimal set of machining parameters were obtained as cutting speed: at 180 m/min., feed rate: 0.05 mm/rev., and depth of cut: 0.15 mm; cutting speed: 145 m/min., feed rate: 0.20 mm/rev. and depth of cut: 0.1 mm for Ra and VB, respectively. ANOVA showed feed rate (96.97%) and cutting speed (58.9%) are dominant factors for Ra and VB, respectively. A remarkable improvement observed in Ra (64.05%) and VB (69.94%) after conducting confirmation tests. The results obtained through the MOORA method showed the optimal set of machining parameters (cutting speed = 180 m/min, feed rate = 0.15 mm/rev and depth of cut = 0.25 mm) for minimizing the Ra and VB.Originality/valueThis work contributes to realistic application for manufacturing industries those dealing with AISI 4340 steel of 35 HRC. The research contribution of present work including the predictive models will provide some useful guidelines in the field of manufacturing, in particular, manufacturing of gear shafts for power transmission, turbine shafts, fasteners, etc.


2016 ◽  
Vol 835 ◽  
pp. 236-241
Author(s):  
P.Y.M. Wibowo Ndaruhadi ◽  
Bambang Santosa

Drilling process has many applications including making molds and dies, all requires different quality of the drilled hole. The aim of this study is to establish models and optimization of cutting parameter to get the best hole quality, including enlargement diameter, circularity error and surface roughness in drilling hardened steel. Drilling experiments have been performed using different cutting parameters (i.e. cutting speed and feed rate) and employ and uncoated carbide drill under flooded cooling. The experimental results show that both of the cutting speed and feed rate significantly affect all responses. Models for responses have been developed for investigation in this study, and their optimizations have been obtained, showing better quality of the drilled hole produced at higher cutting speed and lower feed rate. Desirability for the optimum criteria is 0.944 at the highest cutting speed (60 m/min) and lowest feed rate (0.05 mm/rev).


Author(s):  
Chathakudath Sukumaran Sumesh ◽  
Dawood Sheriff Akbar ◽  
Hari Shankar Purandharadass ◽  
Raghunandan J. Chandrasekaran

Turning is one of the most used metal removal operations in the industry. It can remove material faster, giving reasonably good surface quality apart from geometrical requirements. Conformity of geometry is one of the most significant requirements of turned components to perform their intended functions. Apart from dimensional requirements, the important geometrical necessities are Circularity, Straightness, Cylindricity, Perpendicularity, etc. Since they have a direct influence on the functioning of the components, the effect of the cutting parameters on them has greater significance. In this paper experiments are carried out to examine the effect of turning parameters such as cutting speed, feed rate, and depth of cut on responses like; straightness, roundness, surface roughness, and material removal rate during turning of AISI 4340 steel. Analysis of Variance (ANOVA) is performed and the influence of parameters on each response is studied. The optimal values of parameters obtained from the study are further confirmed by conducting experiments.


2011 ◽  
Vol 264-265 ◽  
pp. 931-936 ◽  
Author(s):  
B. de Agustina ◽  
A. Saa ◽  
Mariano Marcos Bárcena ◽  
E.M. Rubio

The aluminium alloys are widely employed in the aeronautical, aerospace and automotive industries in the most important manufacturing processes. This is due to the fact they have a high resistance even at high temperatures as well as a low density. Nevertheless, these materials can commonly show problems associated with the heat generated during the machining process that reduces their machinability. For this reason, cutting fluids are still widely used. However, the growing social preoccupation towards environmental conservation has made it necessary to develop cleaner production technologies as dry machining, in which no cutting fluids are employed. This situation makes necessary to look for combinations of cutting parameters and types of tools that improve the machining in those extreme work. In this study, the UNS A97050-T7 and UNS A92024-T3 aluminium alloys were analyzed in terms of surface roughness and the morphology of chips obtained, using tools with TiN coating. It was found that the surface quality of the aluminium UNS A97050-T7 and UNS A92024-T3 bars improves with the descent of the feed and with the increase of the cutting speed, being the feed the cutting parameter more influential on the surface roughness. Thus the machining of the UNS A92024-T3 allows obtaining shorter chips than the UNS A97050-T7.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


2013 ◽  
Vol 845 ◽  
pp. 708-712 ◽  
Author(s):  
P.Y.M. Wibowo Ndaruhadi ◽  
S. Sharif ◽  
M.Y. Noordin ◽  
Denni Kurniawan

Surface roughness indicates the damage of the bone tissue due to bone machining process. Aiming at inducing the least damage, this study evaluates the effect of some cutting conditions to the surface roughness of machined bone. In the turning operation performed, the variables are cutting speed (26 and 45 m/min), feed (0.05 and 0.09 mm/rev), tool type (coated and uncoated), and cutting direction (longitudinal and transversal). It was found that feed did not significantly influence surface roughness. Among the influencing factor, the rank is tool type, cutting speed, and cutting direction.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


Sign in / Sign up

Export Citation Format

Share Document