scholarly journals ECO-FRIENDLY GREEN LIQUID CHROMATOGRAPHIC FOR DETERMINATION OF DOXYCYCLINE IN TABLETS AND IN THE PRESENCE OF ITS DEGRADATION PRODUCTS

2018 ◽  
Vol 2 (2) ◽  
pp. 49-55
Author(s):  
Loren Ghidini ◽  
Ana Kogawa ◽  
Hérida Regina Nunes Salgado

Doxycycline, an oral antimicrobial, does not present a sustainable analytical method described in the literature using liquid chromatography. A new and efficient method was developed and validated for the quantification of doxycycline tablets by HPLC-UV. Its aim is the contribution to the green analytical chemistry since it has low use of organic solvent and low production of toxic waste. The HPLC-UV method used a mixture of purified water + 0.5 % acetic acid and ethanol (40:60, v/v). The flow rate was 0.8 mL min-1, C18 Luna column, 20 μL of injected volumes at 275 nm. The samples were prepared in purified water and the method was linear over the concentration range of 20–200 μg mL-1 (r = 0.9997) with limits of detection and quantification of 1.08 and 3.27 μg mL-1, respectively. The precision of the method showed RSD 0.50 % (intra-assay), 2.35 % (inter-assay) and 1.13 % (between analysts). The accuracy of the method was determined by standard recovery and it was 99.85 %. The DOX tablets were subjected to oxidative, acid, basic, neutral and photolytic degradation and it showed be stability indicative. Statistical analysis provided reliable, safety and reproducible results. The method is considered linear, selective, precise, accurate, robust, indicative of stability and safe to be used in routine quality control analyzes for determination and quantification of doxycycline in tablets. The proposed method is an ecologically correct alternative for the evaluation of doxycycline tablets.

2018 ◽  
Vol 2 (2) ◽  
pp. 20-26
Author(s):  
Jéssica Lima ◽  
Ana Kogawa ◽  
Hérida Regina Nunes Salgado

A simple, rapid, economic and green analytical method was validated for the determination of secnidazole in tablets. The aim was to contribute to the green analytical chemistry since it has low use of organic solvent and low production of toxic waste. For the HPLC-UV method, the mobile phase was a mixture of purified water + 0.7 % acetic acid and ethanol (78:22, v/v), flow rate was 1.3 mL min-1 on column CN Phenomenex Luna (250 x 4.60 mm, 5 μm particle size), injection volume was 20 μL with UV detection at 318 nm and retention time of 4.26 minutes. The method was linear over the concentration range of 5-100 μg mL-1 (r = 0.9998) with limits of detection and quantitation of 0.533 e 1.615 μg mL-1, respectively. The precision of the method showed RSD less than 2 %. The accuracy determined by the average recoveries was 99.58 %. The secnidazole tablets were subjected to oxidation, acid, alkaline, neutral and photolysis degradation as stress conditions and the method was considered as indicative of stability. The method is adequate and safe to be a great alternative method in routine quality control analyzes for determination and quantification of secnidazole tablets.


2020 ◽  
Vol 7 (2) ◽  
pp. 82-90
Author(s):  
Patricia Aleixa do Nascimento ◽  
Ana Carolina Kogawa ◽  
Hérida R.N. Salgado

Aims: To develop and validate a new ecological HPLC method for the determination of vancomycin dosage form. Background: Vancomycin is an important antimicrobial. According to the literature, there are many methods that use HPLC, but none of these methods follow the green analytical chemistry principles. Objective: Therefore, a green analytical method to quantify vancomycin in lyophilized powder for injectable solution by HPLC was developed. Materials and Methods: It uses less quantity of toxic solvents, minimizing the costs and optimizing the time of analysis. Water + 0.1% acetic acid and ethanol (85:15, v/v), 0.5 mL min-1, and C18 column (15 cm) at 280 nm were used. Results and Discussion: The method was linear in the range of 40 to 140 μg mL-1, with a correlation coefficient of 0.9998. It was selective when subjected to acid 0.1M, basic 0.01M, oxidative 0.3%, UV light and neutral degradation in a bath of 60 ºC for 8 hours. The precision of the method was proved at intraday (RSD 1.08%), interday (RSD 0.47%) and intermediate levels (RSD 2.35%). It was accurate with a mean recovery of 100.19% and robust when changes were performed in seven parameters of the method and analyzed by the Youden and Steiner test. Conclusion: The method can be applied to routine quality control of vancomycin lyophilized powder for injectable solution as an ecological and sustainable alternative that contemplates the green analytical chemistry and the current pharmaceutical analyses.


2020 ◽  
Vol 16 (8) ◽  
pp. 1037-1051
Author(s):  
Ehab Farouk Elkady ◽  
Marwa Ahmed Fouad ◽  
Abdulgabar A. Ezzy Faquih

Background: Atenolol is a selective beta 1 blocker that can be used alone or in combination with hydrochlorothiazide or with chlorthalidone for the treatment of hypertension and prevention from a heart attack. Objective: The main target of this work was to improve modern, easy, accurate and selective liquid chromatographic method (RP-HPLC) for the determination of these drugs in the presence of their degradation products. These methods can be used as analytical gadgets in quality control laboratories for a routine examination. Methods: In this method, the separation was accomplished through an Inertsil® ODS-3V C18 column (250 mm x 4.6 mm, 5 μm), the mobile phase used was 25 mM aqueous potassium dihydrogen orthophosphate solution adjusted to pH 6.8 by using 0.1M sodium hydroxide and acetonitrile (77 : 23, v/v), the flow rate used was 1 ml/min and detection was achieved at 235 nm using UV. Results: All peaks were sharp and well separated, the retention times were atenolol degradation (ATN Deg.) 2.311 min, atenolol (ATN) 2.580 min, hydrochlorothiazide degradation (HCT Deg.) 5.890 min, hydrochlorothiazide (HCT) 7.016 min, chlorthalidone degradation CTD Deg 8.018 min and chlorthalidone (CTD) 14.972 min. Linearity was obtained and the range of concentrations was 20- 160 μg/ml for atenolol, 10-80 μg/ml for hydrochlorothiazide and 10-80 μg/ml for chlorthalidone. According to ICH guidelines, method validation was accomplished, these methods include linearity, accuracy, selectivity, precision and robustness. Conclusion: The optimized method demonstrated to be specific, robust and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.


2019 ◽  
Vol 3 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Bianca Marco ◽  
Ana Kogawa ◽  
Hérida Salgado

Cefadroxil, an oral antimicrobial, presents few techniques optimized for the reduction of solvents and toxic residues and/or non-use of them. So, a quantitative, new and miniaturized method for determination of cefadroxil monohydrate in capsules has been developed and validated by spectrophotometric method in the visible region according to the international guidelines. The analyzes were performed using microplates containing 96 wells, 1 % of phenolphthalein and sodium hydroxide 0.1 M as reagent at 552 nm. The method was (i) linear in the range of 15-115 µg mL-1, (ii) selective when comparing standard, sample, adjuvants and color reagent, (iii) precise with deviations below 4 %, (iv) accurate when comparing the proposed method with the HPLC method, (v) robusts by making small and deliberate modifications to the method, (vi) besides being fast, low cost, eco-friendly and generates minimal amount of waste. The method can be applied to the routine quality control of cefadroxil monohydrate in capsules and an effective and accessible alternative that contemplates the concepts of current and sustainable green analytical chemistry.


Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Carolina Kogawa ◽  
Hérida Regina Nunes Salgado

Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment.


2020 ◽  
Vol 103 (6) ◽  
pp. 1582-1587
Author(s):  
Patrícia Aleixa do Nascimento ◽  
Ana Carolina Kogawa ◽  
Hérida Regina Nunes Salgado

Abstract Background Vancomycin, an antimicrobial, has many microbiological methods in literature, but it was not found any that follows the green chemistry principles. Objective The aim of this work was to develop and validate a new microbiological analytical method with a green view to determine the vancomycin potency in lyophilized powder using less quantity of diluents and culture medium, minimizing the costs and reducing the time of analysis. Methods The objective will be achieved using the microbiological method by turbidimetry. Results Water was used as the diluent to prepare the vancomycin solution. BHI broth as used as culture media for the growth of the S. aureus ATCC 25923. The method was linear in the range of 30, 39 and 50.7 µg/mL. It was selective, with vancomycin reference and sample absorbance values very similar. The precision of the method was proved at intraday (RSD 4.42 %), interday (RSD 3.56 %) and intermediate levels (RSD 2.03%). It was accurate with mean recovery of 100.71 % and robust when changes were performed in three parameters of the method and analyzed by the F-Test and t-Test. Conclusions The method for evaluating the potency of vancomycin in pharmaceutical product was successfully developed and validated. Highlights The method can be applied to routine quality control of vancomycin product as an alternative that contemplates the green analytical chemistry and the current pharmaceutical analyzes.


2019 ◽  
Author(s):  
Chem Int

Recent study was conducted to develop a simple UV spectrophotometric method to determine Phenytoin in bulk and injection form according to official requirement and validate as per ICH guidelines. λmax of Phenytoin was found 202 nm. Linearity existed perceived in the concentration assortment 2-8 μg/ml (r2 = 0.999) for the method. The method was validated pertaining to linearity, precision and accuracy studies, LOD and LOQ consistent with ICH guidelines. The existent method was establish to be simple, linear, precise, accurate as well as sensitive and can be applied for routine quality control enquiry for the analysis of Phenytoin in bulk and injection form.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


Sign in / Sign up

Export Citation Format

Share Document