scholarly journals Evaluation of SCS - unit hydrograph model to estimate peak flows in watersheds of Norte de Santander

Respuestas ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 6-15
Author(s):  
Leonardo Vargas Garay ◽  
Oscar David Torres Goyeneche ◽  
Gustavo Adolfo Carrillo Soto

In several studies it is necessary to determine the magnitude of extreme flows in a river. Having an adequate register of observed discharge it is possible to adjust a probability density function (fdp) that allows estimating events associated with a high return period (i.e. 100 years). In ungauged basins, such as the majority of basins in the world are, other methodologies are used, such as the Synthetic Unity Hydrograph proposed by the United State Soil Conservation Service (UH-SCS). The UH-SCS model was evaluated in watersheds of the Norte de Santander department (COL), in its capacity to estimate extreme flows, and to explore its possible regionalization. The evaluation is done by comparing estimates of Q100, using the Frequency Factors method and the UH-SCS model. Discharge and precipitation time series were obtained from the IDEAM network, selecting 19 basins based on their drainage area, climatological stations density and records length. Geomorphology was characterized using ArcMap™ on the ASTER-GDEM digital elevation model. Using information available on geology, soils, vegetation cover, and assuming a wet antecedent moisture condition (AMC-III), values of the median of relative Q100 error (ε-Q100) of + 507% and + 406% were obtained for the fdp Gumbel and Log-Pearson. Using dry antecedent moisture condition (AMC-I) ε-Q100 low to + 36% and + 17%. It was possible to minimize ε-Q100 by calibrating the Curve Number (CN) parameter. A satisfactory regionalization function for CN was not found. Applying SCS-HU under AMC-III condition, Q100 is greatly overestimated. It is possible to minimize the error by considering AMC-I and reduce CN, a counter-intuitive situation since extreme flows are associated with wet weather conditions (i.e. Año Niña). Improvements in the characterization of rainfall and soils in Norte de Santander should be investigated.

2021 ◽  
Vol 5 (1) ◽  
pp. 11-21
Author(s):  
Sangay Gyeltshen ◽  
Krisha Kumar Subedi ◽  
Laylo Zaridinova Kamoliddinovna ◽  
Jigme Tenzin

The study assessed the accuracies of globally available Digital Elevation Models (DEM’s) i.e., SRTM v3, ASTER GDEM v2 and ALOS PALSAR DEM with respect to Topo-DEM derived from topographic map of 5m contour interval. 100 ground control points of the elevation data were collected with the help of kinematic hand held GNSS (Global Navigation Satellite System), randomly distributed over the study area. The widely used RMSE statistic, NCC correlation and sub-pixel-based approach were applied to evaluate the erroneous, correlation, horizontal and vertical displacement in terms of pixels for the individual Digital Elevation Model. Following these evaluations, SRTM DEM was found to be highly accurate in terms of RMSE and displacement compared to other DEMs. This study is intended to provide the researchers, GIS specialists and the government agencies dealing with remote sensing and GIS, a basic clue on accuracy of the DEMs so that the best model can be selected for application on various purposes of the similar region.


Author(s):  
Rekha Verma ◽  
Azhar Husain ◽  
Mohammed Sharif

Rainfall-Runoff modeling is a hydrological modeling which is extremely important for water resources planning, development, and management. In this paper, Natural Resource Conservation Service-Curve Number (NRCS-CN) method along with Geographical Information System (GIS) approach was used to evaluate the runoff resulting from the rainfall of four stations, namely, Bilodra, Kathlal, Navavas and Rellawada of Sabarmati River basin. The rainfall data were taken for 10 years (2005-2014). The curve number which is the function of land use, soil and antecedent moisture condition (AMC) was generated in GIS platform. The CN value generated for AMC- I, II and III were 57.29, 75.39 and 87.77 respectively. Using NRCS-CN method, runoff depth was calculated for all the four stations. The runoff depth calculated with respect to the rainfall for Bilodra, Kathlal, Navavas and Rellawada shows a good correlation of 0.96. The computed runoff was compared with the observed runoff which depicted a good correlation of 0.73, 0.70, 0.76 and 0.65 for the four stations. This method results in speedy and precise estimation of runoff from a watershed.


2020 ◽  
Vol 51 (3) ◽  
pp. 443-455
Author(s):  
Wenhai Shi ◽  
Ni Wang

Abstract In the Soil Conservation Service Curve Number (SCS-CN) method for estimating runoff, three antecedent moisture condition (AMC) levels produce a discrete relation between the curve number (CN) and soil water content, which results in corresponding sudden jumps in estimated runoff. An improved soil moisture accounting (SMA)-based SCS-CN method that incorporates a continuous function for the AMC was developed to obviate sudden jumps in estimated runoff. However, this method ignores the effect of storm duration on surface runoff, yet this is an important component of rainfall-runoff processes. In this study, the SMA-based method for runoff estimation was modified by incorporating storm duration and a revised SMA procedure. Then, the performance of the proposed method was compared to both the original SCS-CN and SMA-based methods by applying them in three experimental watersheds located on the Loess Plateau, China. The results indicate that the SCS-CN method underestimates large runoff events and overestimates small runoff events, yielding an efficiency of 0.626 in calibration and 0.051 in validation; the SMA-based method has improved runoff estimation in both calibration (efficiency = 0.702) and validation (efficiency = 0.481). However, the proposed method performed significantly better than both, yielding model efficiencies of 0.810 and 0.779 in calibration and validation, respectively.


2012 ◽  
Vol 4 (1) ◽  
pp. 129-142 ◽  
Author(s):  
A. J. Cook ◽  
T. Murray ◽  
A. Luckman ◽  
D. G. Vaughan ◽  
N. E. Barrand

Abstract. A high resolution surface topography Digital Elevation Model (DEM) is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S), based on ASTER Global Digital Elevation Model (GDEM) data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA) imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE) from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM), and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (doi:10.5060/D47P8W9D).


2010 ◽  
Vol 10 (2) ◽  
pp. 339-352 ◽  
Author(s):  
H. Frey ◽  
W. Haeberli ◽  
A. Linsbauer ◽  
C. Huggel ◽  
F. Paul

Abstract. In the course of glacier retreat, new glacier lakes can develop. As such lakes can be a source of natural hazards, strategies for predicting future glacier lake formation are important for an early planning of safety measures. In this article, a multi-level strategy for the identification of overdeepened parts of the glacier beds and, hence, sites with potential future lake formation, is presented. At the first two of the four levels of this strategy, glacier bed overdeepenings are estimated qualitatively and over large regions based on a digital elevation model (DEM) and digital glacier outlines. On level 3, more detailed and laborious models are applied for modeling the glacier bed topography over smaller regions; and on level 4, special situations must be investigated in-situ with detailed measurements such as geophysical soundings. The approaches of the strategy are validated using historical data from Trift Glacier, where a lake formed over the past decade. Scenarios of future glacier lakes are shown for the two test regions Aletsch and Bernina in the Swiss Alps. In the Bernina region, potential future lake outbursts are modeled, using a GIS-based hydrological flow routing model. As shown by a corresponding test, the ASTER GDEM and the SRTM DEM are both suitable to be used within the proposed strategy. Application of this strategy in other mountain regions of the world is therefore possible as well.


Sign in / Sign up

Export Citation Format

Share Document