scholarly journals Rainfall-Runoff Modeling Using NRCS-CN method and GIS approach

Author(s):  
Rekha Verma ◽  
Azhar Husain ◽  
Mohammed Sharif

Rainfall-Runoff modeling is a hydrological modeling which is extremely important for water resources planning, development, and management. In this paper, Natural Resource Conservation Service-Curve Number (NRCS-CN) method along with Geographical Information System (GIS) approach was used to evaluate the runoff resulting from the rainfall of four stations, namely, Bilodra, Kathlal, Navavas and Rellawada of Sabarmati River basin. The rainfall data were taken for 10 years (2005-2014). The curve number which is the function of land use, soil and antecedent moisture condition (AMC) was generated in GIS platform. The CN value generated for AMC- I, II and III were 57.29, 75.39 and 87.77 respectively. Using NRCS-CN method, runoff depth was calculated for all the four stations. The runoff depth calculated with respect to the rainfall for Bilodra, Kathlal, Navavas and Rellawada shows a good correlation of 0.96. The computed runoff was compared with the observed runoff which depicted a good correlation of 0.73, 0.70, 0.76 and 0.65 for the four stations. This method results in speedy and precise estimation of runoff from a watershed.

2018 ◽  
Vol 2 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Siddi Raju R. ◽  
Sudarsana Raju G. ◽  
Rajasekhar M.

The study aims to estimate the surface runoff in the semi-arid crystalline rock terrain of Mandavi basin using Remote Sensing (RS) and Geographical Information System (GIS) techniques. The rainfall is the only source of water in this basin drains off and little amount percolates into the ground. The study area experiences rigorous groundwater scarcity despite having high rainfall -runoff. Consequently, integrated RS and GIS techniques are used for estimation of the runoff. The weighted curve number (CN) is resolute based on AMC-II (Antecedent Moisture Condition) with the combination of HSGs (hydrologic soil groups) and LU/LC (land use and land cover) categories. The outcomes of study showed 52.292 (CNII) of normal condition, 31.506(CNI) of dry condition and 71.583 (CNIII) of wet condition. The ungauged watershed exhibits an annual average of rainfall, runoff, runoff volume and runoff coefficients for 20 years are 688.82 mm, 478.06 mm, 699.75 m3 and 0.69, respectively. The annual rainfall-runoff relationship during 1995 to 2014 is indicating the overall increase in runoff with the rainfall in the study area.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Lloyd Ling ◽  
Sai Hin Lai ◽  
Zulkifli Yusop ◽  
Ren Jie Chin ◽  
Joan Lucille Ling

The curve number (CN) rainfall–runoff model is widely adopted. However, it had been reported to repeatedly fail in consistently predicting runoff results worldwide. Unlike the existing antecedent moisture condition concept, this study preserved its parsimonious model structure for calibration according to different ground saturation conditions under guidance from inferential statistics. The existing CN model was not statistically significant without calibration. The calibrated model did not rely on the return period data and included rainfall depths less than 25.4 mm to formulate statistically significant urban runoff predictive models, and it derived CN directly. Contrarily, the linear regression runoff model and the asymptotic fitting method failed to model hydrological conditions when runoff coefficient was greater than 50%. Although the land-use and land cover remained the same throughout this study, the calculated CN value of this urban watershed increased from 93.35 to 96.50 as the watershed became more saturated. On average, a 3.4% increase in CN value would affect runoff by 44% (178,000 m3). This proves that the CN value cannot be selected according to the land-use and land cover of the watershed only. Urban flash flood modelling should be formulated with rainfall–runoff data pairs with a runoff coefficient > 50%.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Ahmed Naseh Ahmed Hamdan ◽  
Suhad Almuktar ◽  
Miklas Scholz

It has become necessary to estimate the quantities of runoff by knowing the amount of rainfall to calculate the required quantities of water storage in reservoirs and to determine the likelihood of flooding. The present study deals with the development of a hydrological model named Hydrologic Engineering Center (HEC-HMS), which uses Digital Elevation Models (DEM). This hydrological model was used by means of the Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) and Geographical Information Systems (GIS) to identify the discharge of the Al-Adhaim River catchment and embankment dam in Iraq by simulated rainfall-runoff processes. The meteorological models were developed within the HEC-HMS from the recorded daily rainfall data for the hydrological years 2015 to 2018. The control specifications were defined for the specified period and one day time step. The Soil Conservation Service-Curve number (SCS-CN), SCS Unit Hydrograph and Muskingum methods were used for loss, transformation and routing calculations, respectively. The model was simulated for two years for calibration and one year for verification of the daily rainfall values. The results showed that both observed and simulated hydrographs were highly correlated. The model’s performance was evaluated by using a coefficient of determination of 90% for calibration and verification. The dam’s discharge for the considered period was successfully simulated but slightly overestimated. The results indicated that the model is suitable for hydrological simulations in the Al-Adhaim river catchment.


2020 ◽  
Vol 51 (3) ◽  
pp. 443-455
Author(s):  
Wenhai Shi ◽  
Ni Wang

Abstract In the Soil Conservation Service Curve Number (SCS-CN) method for estimating runoff, three antecedent moisture condition (AMC) levels produce a discrete relation between the curve number (CN) and soil water content, which results in corresponding sudden jumps in estimated runoff. An improved soil moisture accounting (SMA)-based SCS-CN method that incorporates a continuous function for the AMC was developed to obviate sudden jumps in estimated runoff. However, this method ignores the effect of storm duration on surface runoff, yet this is an important component of rainfall-runoff processes. In this study, the SMA-based method for runoff estimation was modified by incorporating storm duration and a revised SMA procedure. Then, the performance of the proposed method was compared to both the original SCS-CN and SMA-based methods by applying them in three experimental watersheds located on the Loess Plateau, China. The results indicate that the SCS-CN method underestimates large runoff events and overestimates small runoff events, yielding an efficiency of 0.626 in calibration and 0.051 in validation; the SMA-based method has improved runoff estimation in both calibration (efficiency = 0.702) and validation (efficiency = 0.481). However, the proposed method performed significantly better than both, yielding model efficiencies of 0.810 and 0.779 in calibration and validation, respectively.


Author(s):  
E. S. Mohamed ◽  
Abdel-Aziz Belal ◽  
Mohamed Abu-hashim

Abstract Background Evaluation of surface runoff is an essential factor in the precision water and soil conservation management through their main extreme impacts on soil properties. The natural resource conservation service curve number model (NRCS-CN) model is used to estimate the magnitude of runoff. Collected topographic data is used to explain the effects of slope variation on water retention and surface runoff. Twenty-eight soil profiles are prepared in Nile delta, Egypt to cover different geomorphic units and hydrological soil groups in the study area. Results The results revealed that the highest value of surface runoff was distinguished close to the urban area and ranges between 40 and 50 mm. In urban areas, the surfaces are paved and there are no infiltration of water. Consequently, the runoff water directly flows to the storm channels. Runoff values ranging between 30 and 40 mm occurred at the north of the study area. The sloping surface and the nature of the clay soil contributed to generate more runoff than do lowland areas. Conclusion The study presented and tested the hydric runoff estimation based-model on the integrating of hydric balance parameters. The GIS tools analyze and compose these parameters to perform an indirect method for the quantity of water that results in direct surface runoff flow. This method helps to gain clear imaging of the surface runoff risks in the study area.


Author(s):  
A. L. Schäfer

This paper presents the development of a conceptual model of a database that allows the monitoring of changes in watersheds over time and verifies the impact of these changes on runoff. The conceptual model was developed using ER modeling techniques. ER diagrams were constructed from the semantic analysis of the variables involved in the issue of runoff in watersheds using the Curve Number method of Natural Resource Conservation Service. The conceptual model was developed based on the concepts of states and events, and the use of time as a basis for organizing spatial data allowed to record the time and place of any changes. The model of representation of spatial data based on object was employed. Through the proposed conceptual model, it is possible to store the results of several simulations for a watershed, linking each simulation to a specific event and identifying which scenario is valid at the time. Thus, it is possible to identify quantitative changes related to runoff over time and relate them to the events that caused them and the entities involved in such events. The conceptual model supports the existence of alternate realities, allowing the simulation and comparison of past and future scenarios.


Author(s):  
Rafael Hernández-Guzmán ◽  
Arturo Ruiz-Luna ◽  
Eduardo Mendoza

Abstract This paper introduces a graphical user interface (GUI) for the R software that allows calculating the rainfall-runoff relationship, using the Curve Number method. This GUI is a raster-tool whose outputs are runoff estimates calculated using land use/land cover and hydrologic soil group maps. The package allows the user to select among three different antecedent moisture conditions and includes modifications about the initial abstraction parameter. We tested this GUI with data derived from two watersheds in Mexico and the outputs were compared with those produced using a well-established GIS tool in a vector environment. The results produced by these two approaches were practically the same. The main advantages of our package are: (1) ‘Sara4r’ is faster than previous vector based tools; (2) it is easy to use, even for people with no previous experience using R; (3) the modular design allows the integration of new routines and, (4) it is free and open source.


2019 ◽  
Vol 4 (4) ◽  
pp. 102-107 ◽  
Author(s):  
Vaishnavi Kiran Patil ◽  
Vidya R. Saraf ◽  
Omkesh V. Karad ◽  
Swapnil B. Ghodke ◽  
Dnyanesvar Gore ◽  
...  

The Hydrologic Engineering Centers Hydrologic Modeling System (HEC-HMS) is a popularly used watershed model to simulate rainfall- runoff process. Hydrological modeling is a commonly used tool to estimate the basin’s hydrological response due to precipitation. It allows to predict the hydrologic response to various watershed management practices and to have a better understanding of the impacts of these practices. It is evident from the extensive review of the literature that the studies on comparative assessment of watershed models for hydrologic simulations are very much limited in developing countries including India. In this study, modified SCS Curve Number method is applied to determine loss model as a major component in rainfall-runoff modeling. The study of HEC-HMS model is used to simulate rainfallrunoff process in Nashik region (Upper Godavari basin), Maharashtra. To compute runoff volume, peak runoff rate, and flow routing methods SCS curve number, SCS unit hydrograph, Exponential recession and Muskingum routing methods are chosen, respectively. The results of the present study indicate that HEC-HMS tool applied to watershed proved to be useful in achieving the various objectives. The study confirmed a significant increase in runoff as a result of urbanization. It is a powerful tool for flood forecasting  Index


2020 ◽  
Vol 9 (1) ◽  
pp. 68-86
Author(s):  
Wana Geyisa Namara ◽  
Tamane Adugna Damise ◽  
Fayera Gudu Tufa

Rainfall runoff modeling is one of the most complex hydrological modeling due to the involvement of different watershed physical parameters. It is essential for the analysis of watershed hydrological response toward the received precipitation under the influence of watershed parameters. As it is a replica of watershed hydrological response, rainfall runoff modeling is essential to evaluate the general characteristics of total surface runoff at catchment’s outlet.  The main objective of this study was rainfall runoff modeling using HEC-HMS for Awash Bello sub-catchment. Hydro-meteorological data collected from the National Meteorological Agency and Ministry of Water Resource, Irrigation and Electricity were used for model calibration and validation.  SCS-CN, SCS-UH, Muskingum and monthly constant method were used for precipitation loss modeling, transform modeling, flood routing and base flow modeling respectively. Nash Sutcliff Efficiency and coefficient of determination have been selected for model performance evaluation. The model had shown good performance both during calibration and validation with (NSE = 0.855, R2= 0.867) for calibration and (NSE = 0.739, R2 = 0.863) for validation respectively. PBIAS for calibration and validation were checked and they were within the acceptable range with a value of 4.59% and 5.67% respectively. By the successful accomplishing of calibration and validation, the peak flood from the model (573.7m3/s) was compared with direct observed flow (546.4m3/s) and model provided nearly the same result with the direct observed flow.


Sign in / Sign up

Export Citation Format

Share Document