scholarly journals Potenciales áreas cultivables de pasifloras en una región tropical considerando escenarios de cambio climático

2021 ◽  
Vol 13 (1) ◽  
pp. 109-129
Author(s):  
Andrés Mauricio Munar Samboní ◽  
Adalberto Rodríguez Carlosama ◽  
Jorge Luis Muñoz España

Contextualización: El cambio climático y las actividades antrópicas sobre los recursos naturales se constituyen como los principales causantes de la pérdida de biodiversidad y la redistribución de las especies.  Vacío de conocimiento: Sin embargo, los efectos a nivel de comunidades y ecosistemas, así como los impactos en cultivos agrícolas en escala regional, son poco estudiados.  Los modelos de distribución de especies se han convertido, por lo tanto, en valiosas herramientas para la predicción de áreas potencialmente aptas para especies cultivables, su gestión y planificación. Propósito: Este estudio consistió en la predicción de potenciales áreas cultivables de maracuyá (Passiflora edulis var. flavicarpa Degener), granadilla (Passiflora ligularis Juss), y cholupa (Passiflora maliformis L.) en una región tropical, a través del modelo MaxEnt, en escenarios de cambio climático.  Metodología:  Se utilizaron como datos de entrada (para el modelo MaxEnt) registros de presencia de las especies analizadas, obtenidos a partir de sus coordenadas geográficas. En total, fueron usados 141 registros de presencia de maracuyá, 256 registros de granadilla y 40 registros de cholupa, así como 12 variables bioclimáticas para las proyecciones actuales y futuras en los periodos 2050 y 2070, considerando así dos escenarios RCPs (Representative Concentration Pathways) del Coupled Model Intercomparison Project (CMIP5) (RCP 4.5 y RCP 8.5). Resultados y conclusiones: Los resultados revelan que las potenciales áreas cultivables para las especies analizadas podrían pronosticarse a través de MaxEnt utilizando registros de presencia en campo y variables bioclimáticas. Así mismo, las simulaciones indicaron que las áreas de ocurrencia potencial para las especies analizadas podrían disminuir en el futuro dependiendo de los escenarios climáticos (RCP 4.5 y RCP 8.5) para los periodos 2050 y 2070. Para los cultivos de maracuyá, granadilla y cholupa, las mayores reducciones en las áreas de ocurrencia potencial corresponden al 23 %, 25 % y 31 % respectivamente, y se presentarían en el período 2070 en un escenario pesimista (RCP 8.5). Este es el primer estudio que pronostica las potenciales áreas cultivables de pasifloras utilizando el modelo Maxent y escenarios de cambio climático en escala regional en una región tropical. El abordaje propuesto puede proveer importantes herramientas para la gestión y aprovechamiento sostenible de las especies estudiadas.

2017 ◽  
Vol 10 (4) ◽  
pp. 1170
Author(s):  
Thalyta Soares dos Santos

A suscetibilidade da região Nordeste do Brasil ao processo de desertificação está associada à variabilidade do clima e a fatores antropogênicos. Nesse contexto, extremos climáticos intensos associados à degradação do solo podem levar à aceleração do processo de desertificação no semiárido. O objetivo do trabalho é avaliar processo de desertificação no estado de Pernambuco e suas projeções para o século XXI. O estudo foi realizado com dados mensais de simulações de precipitação e temperatura do Climatic Research Unit (CRU) e projeções do modelo HADGEM2-ES derivado do Coupled Model Intercomparison Project Phase 5 (CMIP5, utilizados no quinto relatório do Intergovernmental Panel on Climate Change - IPCC-AR5) no cenário RCP 8.5. Para analise, a evapotranspiração potencial foi calculada pelo método de Thornthwaite, que serviu para o cálculo do índice de aridez. O índice de aridez é bastante utilizado nos estudos para a determinação de áreas secas e principalmente nos estudos do processo de desertificação. Os resultados indicaram que, considerando a variabilidade do climática atual e futura no Nordeste do Brasil, associada a ações antrópicas, o estado de Pernambuco tem uma alta suscetibilidade a desertificação.  A B S T R A C TThe Brazilian Northeast region susceptibility to desertification process is associated with climate variability and anthropogenic factors. Intense climatic extremes associated with soil degradation may accelerate the desertification process in the semiarid region. The main objective of this study is to evaluate the desertification process in Pernambuco state and its projections for the 21st century. The study was carried out with monthly precipitation and temperature datasets from Climatic Research Unit (CRU) and HADGEM2-ES projections, derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5, used in the fifth report of the Intergovernmental Panel on Climate Change - IPCC -AR5) in the RCP 8.5 scenario. The potential evapotranspiration was calculated by the Thornthwaite method, which was used to calculate the aridity index. The aridity index is widely used in to determine dry areas, especially in desertification process studies. The results shows that, considering the current and future climate variability in Brazilian Northeast, associated with anthropic actions, Pernambuco has a high susceptibility to desertification.Keywords: CMIP5; Aridity Index; Semi-arid. 


2013 ◽  
Vol 17 (7) ◽  
pp. 2967-2979 ◽  
Author(s):  
R. Alkama ◽  
L. Marchand ◽  
A. Ribes ◽  
B. Decharme

Abstract. This paper assesses the detectability of changes in global streamflow. First, a statistical detection method is applied to observed (no missing data which represent 42% of global discharge) and reconstructed (gaps are filled in order to cover a larger area and about 60% of global discharge) streamflow. Observations show no change over the 1958–1992 period. Further, an extension to 2004 over the same catchment areas using reconstructed data does not provide evidence of a significant change. Conversely, a significant change is found in reconstructed streamflow when a larger area is considered. These results suggest that changes in global streamflow are still unclear. Moreover, changes in streamflow as simulated by models from Coupled Model Intercomparison Project 5 (CMIP5) using the historic and future RCP 8.5 scenarios are investigated. Most CMIP5 models are found to simulate the climatological streamflow reasonably well, except for over South America and Africa. Change becomes significant between 2016 and 2040 for all but three models.


2013 ◽  
Vol 10 (2) ◽  
pp. 2117-2140 ◽  
Author(s):  
R. Alkama ◽  
L. Marchand ◽  
A. Ribes ◽  
B. Decharme

Abstract. This paper assesses the detectability of changes in global streamflow. First, a statistical detection method is applied to observed (no missing data) and reconstructed (gaps are filled in order to cover a larger area) streamflow. Observations show no change over the 1958–1992 period. Further, extension to 2004 over the same catchment areas using reconstructed data does not provide evidence of a significant change. Conversely, a significant change is found in reconstructed streamflow when a larger area is considered. These results suggest that changes in global streamflow are still unclear. Next, changes in streamflow as simulated by models from Coupled Model Intercomparison Project 5 (CMIP5) using the historical and future RCP 8.5 scenario are investigated. Most CMIP5 models are found to simulate the climatological streamflow reasonably well, except over South America and Africa. Change becomes significant between 2016 and 2040 for all but three models.


2021 ◽  
Author(s):  
Frank Kreienkamp ◽  
Barbara Früh ◽  
Sven Kotlarski ◽  
Carsten Linke ◽  
Marc Olefs ◽  
...  

<p>Eine zentrale Aufgabe von Klimaforschung und Klimakommunikation ist die Beschreibung möglicher Entwicklungspfade des künftigen Klimas sowie der antreibenden Kräfte. Diese Entwicklungspfade werden Klimaszenarien genannt. Klimaszenarien wiederum basieren auf Szenarien möglicher Entwicklung von Gesellschaft, Technologie und Ressourcennutzung, um daraus die resultierenden Emissionen von Treibhausgasen abzuschätzen. </p> <p>In der Nutzerkommunikation werden die Klimaszenarien des Intergovernmental Panel on Climate Change (IPCC) in der Regel mit prägnanten Namen beschrieben. Im deutschsprachigen Raum wurden in den letzten Jahren jedoch verschiedene Namen für dieselben Klimaszenarien genutzt. Dies führte oft zu Irritationen und Verwechslungen.</p> <p>Um dem entgegenzuwirken hat nun eine Arbeitsgruppe der drei deutschsprachigen Wetterdienste, Bundes- und Landeseinrichtungen und aus der Klimaforschung erstmals eine Empfehlung für eine einheitliche Benennung, Beschreibung und farbliche Kennzeichnung einer Auswahl von Klimaszenarien des IPCC vorgelegt. Dieses betrifft die Szenarien der CMIP6<sup>1</sup>-Generation die aus zwei sich gegenseitig ergänzenden Komponenten bestehen: den Shared Socioeconomic Pathways (SSPs) und den Representative Concentration Pathways (RCPs). Im speziellen hier die Szenarien SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 und SSP5-8.5. Dieses sind die Szenarien die zum einen von den Modellgruppen für Modellsimulationen genutzt wurden und oder in der politischen Diskussion regelmäßig besprochen werden.</p> <p>Dieser Beitrag stellt die Empfehlungen der Arbeitsgruppe für eine einheitliche Sprach- und Kommunikationsregelung  der fünf derzeit am häufigsten genutzten Klimaszenarien im deutschsprachigen Raum vor.</p> <p><sup>1</sup> CMIP6: Coupled Model Intercomparison Project Phase 6</p>


Author(s):  
Isaac Kwesi Nooni ◽  
Daniel Fiifi T. Hagan ◽  
Guojie Wang ◽  
Waheed Ullah ◽  
Jiao Lu ◽  
...  

The main goal of this study was to assess the interannual variations and spatial patterns of projected changes in simulated evapotranspiration (ET) in the 21st century over continental Africa based on the latest Shared Socioeconomic Pathways and the Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) provided by the France Centre National de Recherches Météorologiques (CNRM-CM) model in the Sixth Phase of Coupled Model Intercomparison Project (CMIP6) framework. The projected spatial and temporal changes were computed for three time slices: 2020–2039 (near future), 2040–2069 (mid-century), and 2080–2099 (end-of-the-century), relative to the baseline period (1995–2014). The results show that the spatial pattern of the projected ET was not uniform and varied across the climate region and under the SSP-RCPs scenarios. Although the trends varied, they were statistically significant for all SSP-RCPs. The SSP5-8.5 and SSP3-7.0 projected higher ET seasonality than SSP1-2.6 and SSP2-4.5. In general, we suggest the need for modelers and forecasters to pay more attention to changes in the simulated ET and their impact on extreme events. The findings provide useful information for water resources managers to develop specific measures to mitigate extreme events in the regions most affected by possible changes in the region’s climate. However, readers are advised to treat the results with caution as they are based on a single GCM model. Further research on multi-model ensembles (as more models’ outputs become available) and possible key drivers may provide additional information on CMIP6 ET projections in the region.


2011 ◽  
Vol 24 (16) ◽  
pp. 4402-4418 ◽  
Author(s):  
Aaron Donohoe ◽  
David S. Battisti

Abstract The planetary albedo is partitioned into a component due to atmospheric reflection and a component due to surface reflection by using shortwave fluxes at the surface and top of the atmosphere in conjunction with a simple radiation model. The vast majority of the observed global average planetary albedo (88%) is due to atmospheric reflection. Surface reflection makes a relatively small contribution to planetary albedo because the atmosphere attenuates the surface contribution to planetary albedo by a factor of approximately 3. The global average planetary albedo in the ensemble average of phase 3 of the Coupled Model Intercomparison Project (CMIP3) preindustrial simulations is also primarily (87%) due to atmospheric albedo. The intermodel spread in planetary albedo is relatively large and is found to be predominantly a consequence of intermodel differences in atmospheric albedo, with surface processes playing a much smaller role despite significant intermodel differences in surface albedo. The CMIP3 models show a decrease in planetary albedo under a doubling of carbon dioxide—also primarily due to changes in atmospheric reflection (which explains more than 90% of the intermodel spread). All models show a decrease in planetary albedo due to the lowered surface albedo associated with a contraction of the cryosphere in a warmer world, but this effect is small compared to the spread in planetary albedo due to model differences in the change in clouds.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


2016 ◽  
Author(s):  
Stephen M. Griffies ◽  
Gokhan Danabasoglu ◽  
Paul J. Durack ◽  
Alistair J. Adcroft ◽  
V. Balaji ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.


2020 ◽  
Author(s):  
Sophie Nowicki ◽  
Antony J. Payne ◽  
Heiko Goelzer ◽  
Helene Seroussi ◽  
William H. Lipscomb ◽  
...  

Abstract. Projection of the contribution of ice sheets to sea-level change as part of the Coupled Model Intercomparison Project – phase 6 (CMIP6) takes the form of simulations from coupled ice-sheet-climate models and standalone ice sheet models, overseen by the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). This paper describes the experimental setup for process-based sea-level change projections to be performed with standalone Greenland and Antarctic ice sheet models in the context of ISMIP6. The ISMIP6 protocol relies on a suite of polar atmospheric and oceanic CMIP-based forcing for ice sheet models, in order to explore the uncertainty in projected sea-level change due to future emissions scenarios, CMIP models, ice sheet models, and parameterizations for ice-ocean interactions. We describe here the approach taken for defining the suite of ISMIP6 standalone ice sheet simulations, document the experimental framework and implementation, as well as present an overview of the ISMIP6 forcing to be used by participating ice sheet modeling groups.


Sign in / Sign up

Export Citation Format

Share Document