scholarly journals CLASSIFICATION OF LIQUIDS USING A PATCH ANTENNA AND HIERARCHICAL CLUSTERING ALGORITHMS

Author(s):  
Ebru EFEOĞLU ◽  
Gürkan TUNA
2021 ◽  
Vol 502 (1) ◽  
pp. 1334-1343
Author(s):  
H Sreehari ◽  
Anuj Nandi

ABSTRACT In this paper, we employ Machine Learning algorithms on multimission observations for the classification of accretion states of outbursting black hole X-ray binaries for the first time. Archival data from RXTE, Swift, MAXI, and AstroSat observatories are used to generate the hardness intensity diagrams (HIDs) for outbursts of the sources XTE J1859+226 (1999 outburst), GX 339−4 (2002, 2004, 2007, and 2010 outbursts), IGR J17091−3624 (2016 outburst), and MAXI J1535−571 (2017 outburst). Based on variation of X-ray flux, hardness ratios, presence of various types of quasi-periodic oscillations (QPOs), photon indices, and disc temperature, we apply clustering algorithms like K-Means clustering and Hierarchical clustering to classify the accretion states (clusters) of each outburst. As multiple parameters are involved in the classification process, we show that clustering algorithms club together the observations of similar characteristics more efficiently than the ‘standard’ method of classification. We also infer that K-Means clustering provides more reliable results than Hierarchical clustering. We demonstrate the importance of the classification based on machine learning by comparing it with results from ‘standard’ classification.


2021 ◽  
Vol 11 (23) ◽  
pp. 11122
Author(s):  
Thomas Märzinger ◽  
Jan Kotík ◽  
Christoph Pfeifer

This paper is the result of the first-phase, inter-disciplinary work of a multi-disciplinary research project (“Urban pop-up housing environments and their potential as local innovation systems”) consisting of energy engineers and waste managers, landscape architects and spatial planners, innovation researchers and technology assessors. The project is aiming at globally analyzing and describing existing pop-up housings (PUH), developing modeling and assessment tools for sustainable, energy-efficient and socially innovative temporary housing solutions (THS), especially for sustainable and resilient urban structures. The present paper presents an effective application of hierarchical agglomerative clustering (HAC) for analyses of large datasets typically derived from field studies. As can be shown, the method, although well-known and successfully established in (soft) computing science, can also be used very constructively as a potential urban planning tool. The main aim of the underlying multi-disciplinary research project was to deeply analyze and structure THS and PUE. Multiple aspects are to be considered when it comes to the characterization and classification of such environments. A thorough (global) web survey of PUH and analysis of scientific literature concerning descriptive work of PUH and THS has been performed. Moreover, out of several tested different approaches and methods for classifying PUH, hierarchical clustering algorithms functioned well when properly selected metrics and cut-off criteria were applied. To be specific, the ‘Minkowski’-metric and the ‘Calinski-Harabasz’-criteria, as clustering indices, have shown the best overall results in clustering the inhomogeneous data concerning PUH. Several additional algorithms/functions derived from the field of hierarchical clustering have also been tested to exploit their potential in interpreting and graphically analyzing particular structures and dependencies in the resulting clusters. Hereby, (math.) the significance ‘S’ and (math.) proportion ‘P’ have been concluded to yield the best interpretable and comprehensible results when it comes to analyzing the given set (objects n = 85) of researched PUH-objects together with their properties (n > 190). The resulting easily readable graphs clearly demonstrate the applicability and usability of hierarchical clustering- and their derivative algorithms for scientifically profound building classification tasks in Urban Planning by effectively managing huge inhomogeneous building datasets.


Author(s):  
Mohana Priya K ◽  
Pooja Ragavi S ◽  
Krishna Priya G

Clustering is the process of grouping objects into subsets that have meaning in the context of a particular problem. It does not rely on predefined classes. It is referred to as an unsupervised learning method because no information is provided about the "right answer" for any of the objects. Many clustering algorithms have been proposed and are used based on different applications. Sentence clustering is one of best clustering technique. Hierarchical Clustering Algorithm is applied for multiple levels for accuracy. For tagging purpose POS tagger, porter stemmer is used. WordNet dictionary is utilized for determining the similarity by invoking the Jiang Conrath and Cosine similarity measure. Grouping is performed with respect to the highest similarity measure value with a mean threshold. This paper incorporates many parameters for finding similarity between words. In order to identify the disambiguated words, the sense identification is performed for the adjectives and comparison is performed. semcor and machine learning datasets are employed. On comparing with previous results for WSD, our work has improvised a lot which gives a percentage of 91.2%


Author(s):  
Alifia Puspaningrum ◽  
Nahya Nur ◽  
Ozzy Secio Riza ◽  
Agus Zainal Arifin

Automatic classification of tuna image needs a good segmentation as a main process. Tuna image is taken with textural background and the tuna’s shadow behind the object. This paper proposed a new weighted thresholding method for tuna image segmentation which adapts hierarchical clustering analysisand percentile method. The proposed method considering all part of the image and the several part of the image. It will be used to estimate the object which the proportion has been known. To detect the edge of tuna images, 2D Gabor filter has been implemented to the image. The result image then threshold which the value has been calculated by using HCA and percentile method. The mathematical morphologies are applied into threshold image. In the experimental result, the proposed method can improve the accuracy value up to 20.04%, sensitivity value up to 29.94%, and specificity value up to 17,23% compared to HCA. The result shows that the proposed method cansegment tuna images well and more accurate than hierarchical cluster analysis method.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 370
Author(s):  
Shuangsheng Wu ◽  
Jie Lin ◽  
Zhenyu Zhang ◽  
Yushu Yang

The fuzzy clustering algorithm has become a research hotspot in many fields because of its better clustering effect and data expression ability. However, little research focuses on the clustering of hesitant fuzzy linguistic term sets (HFLTSs). To fill in the research gaps, we extend the data type of clustering to hesitant fuzzy linguistic information. A kind of hesitant fuzzy linguistic agglomerative hierarchical clustering algorithm is proposed. Furthermore, we propose a hesitant fuzzy linguistic Boole matrix clustering algorithm and compare the two clustering algorithms. The proposed clustering algorithms are applied in the field of judicial execution, which provides decision support for the executive judge to determine the focus of the investigation and the control. A clustering example verifies the clustering algorithm’s effectiveness in the context of hesitant fuzzy linguistic decision information.


2020 ◽  
Vol 161 ◽  
pp. 104884 ◽  
Author(s):  
Jihwan Park ◽  
Keon Vin Park ◽  
Soohyun Yoo ◽  
Sang Ok Choi ◽  
Sung Won Han

Sign in / Sign up

Export Citation Format

Share Document