scholarly journals Phosphorus toxicity disrupts Rubisco activation and reactive oxygen species defense systems by phytic acid accumulation in leaves

Authorea ◽  
2020 ◽  
Author(s):  
Daisuke Takagi ◽  
Atsuko Miyagi ◽  
Youshi Tazoe ◽  
Mao Suganami ◽  
Maki Kawai Yamada ◽  
...  
2020 ◽  
Vol 43 (9) ◽  
pp. 2033-2053 ◽  
Author(s):  
Daisuke Takagi ◽  
Atsuko Miyagi ◽  
Youshi Tazoe ◽  
Mao Suganami ◽  
Maki Kawai‐Yamada ◽  
...  

2020 ◽  
Vol 43 (9) ◽  
Author(s):  
Daisuke Takagi ◽  
Atsuko Miyagi ◽  
Youshi Tazoe ◽  
Mao Suganami ◽  
Maki Kawai‐Yamada ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 177-200
Author(s):  
Colleen M. Hansel ◽  
Julia M. Diaz

Reactive oxygen species (ROS) are produced ubiquitously across the tree of life. Far from being synonymous with toxicity and harm, biological ROS production is increasingly recognized for its essential functions in signaling, growth, biological interactions, and physiochemical defense systems in a diversity of organisms, spanning microbes to mammals. Part of this shift in thinking can be attributed to the wide phylogenetic distribution of specialized mechanisms for ROS production, such as NADPH oxidases, which decouple intracellular and extracellular ROS pools by directly catalyzing the reduction of oxygen in the surrounding aqueous environment. Furthermore, biological ROS production contributes substantially to natural fluxes of ROS in the ocean, thereby influencing the fate of carbon, metals, oxygen, and climate-relevant gases. Here, we review the taxonomic diversity, mechanisms, and roles of extracellular ROS production in marine bacteria, phytoplankton, seaweeds, and corals, highlighting the ecological and biogeochemical influences of this fundamental and remarkably widespread process.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 681 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
M.H.M. Borhannuddin Bhuyan ◽  
Faisal Zulfiqar ◽  
Ali Raza ◽  
Sayed Mohammad Mohsin ◽  
...  

Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.


2001 ◽  
Vol 28 (10) ◽  
pp. 1055 ◽  
Author(s):  
Zhiguang Zhao ◽  
Guocang Chen ◽  
Chenglie Zhang

Abscisic acid accumulation and oxidative stress are two common responses of plants to environmental stresses. However, little is known about their relationships. The purpose of this article is to investigate the effects of reactive oxygen species and nitric oxide on the plant hormone abscisic acid synthesis in root tips of wheat (Triticum aestivum L.) seedlings under drought stress. Detached root tips were subjected to drought stress by naturally evaporating until 20% of their fresh weights were lost. The activities of superoxide synthases and nitric oxide synthase (EC 1.14.13.39) increased after 20 min of treatment and abscisic acid began to accumulate 60 min later. The induction of abscisic acid by drought was strongly blocked by pretreating the root tips with reactive oxygen species eliminators tiron or ascorbate acid, and with nitric oxide synthase inhibitor Nω-nitro-L-arginine or nitric oxide eliminator 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide. Consistent with these results, reactive oxygen species generators diethyldithiocarbamic acid, xanthine–xanthine oxidase and triazole or nitric oxide donor sodium nitroprusside can also induce abscisic acid accumulation in root tips of wheat seedlings. While potentiated by reactive oxygen species, the effect of sodium nitroprusside on abscisic acid accumulation was blocked by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide. Based on these results, we suggest that reactive oxygen species and nitric oxide play important roles in drought-induced abscisic acid synthesis in plant, they may be the signals through which the plant can ‘sense’ the drought condition.


MedPharmRes ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 1-6
Author(s):  
Binh Vong ◽  
Thuy Trinh ◽  
Nghiep Ngo ◽  
◽  
◽  
...  

Reactive oxygen species (ROS) or oxidative stress has been reported with strongly involving to pathogenesis of many diseases in human. On the other hand, ROS play a critical regulation as secondary signal to maintain intracellular redox equilibrium. Basically, the antioxidant defense systems in the body counteract with overproduced ROS. However, when the redox balance is broken under severe oxidative stress conditions, it leads to tissue injuries and numerous disorders. In this review, we briefly introduce the systems of ROS and antioxidants systems in the body and discuss the opposite roles of ROS in normal physiological conditions and diseases. For ROS-related diseases, conventional and currently developed antioxidant therapies are also described in this review.


Sign in / Sign up

Export Citation Format

Share Document