scholarly journals Comparing genome scans among species of the stickleback order reveals three different patterns of genetic diversity

Author(s):  
James Reeve ◽  
Qiushi Li ◽  
Dorothea Lindtke ◽  
Sam Yeaman

Comparing genome scans among species is a powerful approach for investigating the patterns left by evolutionary processes. In particular, this offers a way to detect candidate genes that drive convergent evolution. We compared genome scan results to investigate if patterns of genetic diversity and divergence are shared among divergent species within the stickleback order (Gasterosteiformes): the threespine stickleback (Gasterosteus aculeatus), ninespine stickleback (Pungitius pungitus) and tubesnout (Aulorhynchus flavidus). Populations were sampled from the southern and northern edges of each species’ range, to identify patterns associated with latitudinal changes in genetic diversity. Weak correlations in genetic diversity (F and expected heterozygosity) and three different patterns in the genomic landscape were found among these species. Additionally, no candidate genes for convergent evolution were detected. This is a counterexample to the growing number of studies that have shown overlapping genetic patterns, demonstrating that genome scan comparisons can be noisy due to the effects of several interacting evolutionary forces.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhigang Wu ◽  
Xinwei Xu ◽  
Juan Zhang ◽  
Gerhard Wiegleb ◽  
Hongwei Hou

Abstract Background Due to the environmental heterogeneity along elevation gradients, alpine ecosystems are ideal study objects for investigating how ecological variables shape the genetic patterns of natural species. The highest region in the world, the Qinghai-Tibetan Plateau, is a hotspot for the studies of evolutionary processes in plants. Many large rivers spring from the plateau, providing abundant habitats for aquatic and amphibious organisms. In the present study, we examined the genetic diversity of 13 Ranunculus subrigidus populations distributed throughout the plateau in order to elucidate the relative contribution of geographic distance and environmental dissimilarity to the spatial genetic pattern. Results A relatively low level of genetic diversity within populations was found. No spatial genetic structure was suggested by the analyses of molecular variance, Bayesian clustering analysis and Mantel tests. Partial Mantel tests and multiple matrix regression analysis showed a significant influence of the environment on the genetic divergence of the species. Both climatic and water quality variables contribute to the habitat heterogeneity of R. subrigidus populations. Conclusions Our results suggest that historical processes involving long-distance dispersal and local adaptation may account for the genetic patterns of R. subrigidus and current environmental factors play an important role in the genetic differentiation and local adaptation of aquatic plants in alpine landscapes.


2015 ◽  
Vol 23 ◽  
pp. 77-86 ◽  
Author(s):  
Román Vilas ◽  
Sara G. Vandamme ◽  
Manuel Vera ◽  
Carmen Bouza ◽  
Gregory E. Maes ◽  
...  

Mammalia ◽  
2014 ◽  
Vol 78 (2) ◽  
Author(s):  
Claudine Montgelard ◽  
Saliha Zenboudji ◽  
Anne-Laure Ferchaud ◽  
Véronique Arnal ◽  
Bettine Jansen van Vuuren

AbstractThe focus of this review is on landscape genetics (LG), a relatively new discipline that arose approximately 10 years ago. LG spans the interface between population genetics and landscape ecology and thus incorporates the concepts, methods, and tools from both disciplines. On the basis of an understanding of the spatial distribution of genetic diversity, LG aims to explain how landscape and environmental characteristics influence microevolutionary processes and metapopulation dynamics, including gene flow (i.e., connectivity) and selection (i.e., local adaptations). LG is concerned with events that occurred during the recent time scale, and the individual is the operational unit. As a discipline that combines spatial genetic diversity with ecological features, LG is able to address questions relating to different evolutionary processes. We illustrate some of these here using examples taken from mammals: population structure; gene flow and the identification of barriers; fragmentation, connectivity, and corridors; local adaptation and selection; there are two different questions: applications in conservation genetics; and future developments in LG. We will then present the methods and tools commonly used in the different steps of LG analyses: the genetic and landscape sampling, the quantification of genetic variation, the characterization of spatial landscape structures, and finally, the correlation between genetic patterns and landscape features.


2021 ◽  
Author(s):  
Daniel J. Cotter ◽  
Timothy H. Webster ◽  
Melissa A. Wilson

AbstractMutation, recombination, selection, and demography affect genetic variation across the genome. Increased mutation and recombination both lead to increases in genetic diversity in a region-specific manner, while complex demographic patterns shape patterns of diversity on a more global scale. The X chromosome is particularly interesting because it contains several distinct regions that are subject to different combinations and strengths of these processes, notably the pseudoautosomal regions (PARs) and the X-transposed region (XTR). The X chromosome thus can serve as a unique model for studying how genetic and demographic forces act in different contexts to shape patterns of observed variation. Here we investigate diversity, divergence, and linkage disequilibrium in each region of the X chromosome using genomic data from 26 human populations. We find that both diversity and substitution rate are consistently elevated in PAR1 and the XTR compared to the rest of the X chromosome. In contrast, linkage disequilibrium is lowest in PAR1 and highest on the non-recombining X chromosome, with the XTR falling in between, suggesting that the XTR (usually included in the non-recombining X) may need to be considered separately in future studies. We also observed strong population-specific effects on genetic diversity; not only does genetic variation differ on the X and autosomes among populations, but the effects of linked selection on the X relative to autosomes have been shaped by population-specific history. The substantial variation in patterns of variation across these regions provides insight into the unique evolutionary history contained within the X chromosome.Significance StatementDemography and selection affect the X chromosome differently from non-sex chromosomes. However, the X chromosome can be subdivided into multiple distinct regions that facilitate even more fine-scaled assessment of these processes. Here we study regions of the human X chromosome in 26 populations to find evidence that recombination may be mutagenic in humans and that the X-transposed region may undergo recombination. Further we observe that the effects of selection and demography act differently on the X chromosome relative to the autosomes across human populations. Together, our results highlight profound regional differences across the X chromosome, simultaneously making it an ideal system for exploring the action of evolutionary forces as well as necessitating its careful consideration and treatment in genomic analyses.


2020 ◽  
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

AbstractMany freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Leptoxis compacta does not display an isolation by distance pattern, contrasting patterns seen in many riverine taxa. Our findings also indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9789
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

Many freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Our findings indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


2021 ◽  
Author(s):  
Raghavendra Gunnaiah ◽  
Ratnakar M. Shet ◽  
Ashwini Lamani ◽  
Dattatraya H. Radhika ◽  
Rudrappa C. Jagadeesha

Abstract Mangalore melon (Cucumis melo ssp. agrestis var. acidulus) is a non-dessert melon, extensively grown in the coastal districts of South India, but hardly known to the rest of the World. Immature or mature fruits of Mangalore melon are used in preparation of delicious dishes such as vegetable stew, chutneys and curries. They are appreciated for nutritional values, long shelf life and biotic stress resistance. Seventy-nine accessions of Mangalore melon were collected from five states of South India and their genetic diversity was assessed using inter simple sequence repeat (ISSR) markers. Putative candidate genes of extended shelf life in Mangalore melon were studied by quantitative reverse transcription polymerase chain reaction in comparison with cantaloupe (Cucumis melo L.). Shelf life varied from 65 days to 300 days at room temperature. Six ISSR primers amplified 142 fragments ranging from 80 bp to 2380 bp with an average of 23.66 bands per marker on a high-resolution capillary electrophoresis system. Neighbor joining phylogenetic tree construction from the ISSR allele similarity based genetic distance revealed two major clusters with 46 and 33 accessions in each cluster. Expression of fruit ripening related genes of ethylene biosynthesis (1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase) and cell wall metabolism (polygalacturonase, xyloglucan endotransglucosylase/hydrolase and expansin) in Mangalore melons was significantly lower than the cantaloupe melon at 180 days after harvest. Mangalore melon is a promising genetic resource for enhancing the shelf life of melons and the putative candidate genes are useful in enhancing shelf life of cantaloupe following validation and conformation.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 821 ◽  
Author(s):  
Jiang ◽  
Xu ◽  
Deng

A rapidly changing climate and frequent human activity influences the distribution and community structure of forests. Increasing our knowledge about the genetic diversity and distribution patterns of trees is helpful for forest conservation and management. In this study, nSSRs (nuclear simple sequence repeats) were integrated with a species distribution model (SDM) to investigate the spatial genetic patterns and distribution dynamics of Quercus chungii F.P.Metcalf, a rare oak in the subtropics of southeast China. A total of 188 individuals from 11 populations distributed across the natural range of Q. chungii were genotyped using nine nSSRs. The STRUCTURE analysis indicated that genetic admixture was present in all populations, but the population genetic variation and genetic differentiation were related to their geographical distributions. The SDM result indicated that Q. chungii retreated to the Nanling Mountains and adjacent areas during the Last Glacial Maximum (LGM) period, which corresponds to higher genetic diversity for populations in this region. Landscape genetic analysis showed that the Nanling Mountains served as a corridor for organism dispersal at the glacial and interglacial periods within the Quaternary. Based on these results, we propose that establishing nature reserves to protect the ecological corridor across the Nanling Mountains is necessary for the conservation of regional species genetic diversity, as well as the ecosystem of evergreen broadleaved forests in southern China. The study combines species distribution models and genetic diversity to provide new insight into biodiversity conservation and forest management under future climate change.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 487 ◽  
Author(s):  
Acuña ◽  
Rivas ◽  
Brambilla ◽  
Cerrillo ◽  
Frusso ◽  
...  

The genetic diversity of 14 Japanese plum (Prunus salicina Lindl) landraces adapted to an ecosystem of alternating flooding and dry conditions was characterized using neutral simple sequence repeat (SSR) markers. Twelve SSRs located in six chromosomes of the Prunus persica reference genome resulted to be polymorphic, thus allowing identification of all the evaluated landraces. Differentiation between individuals was moderate to high (average shared allele distance (DAS) = 0.64), whereas the genetic diversity was high (average indices polymorphism information content (PIC) = 0.62, observed heterozygosity (Ho) = 0.51, unbiased expected heterozygosity (uHe) = 0.70). Clustering and genetic structure approaches grouped all individuals into two major groups that correlated with flesh color. This finding suggests that the intuitive breeding practices of growers tended to select plum trees according to specific phenotypic traits. These neutral markers were adequate for population genetic studies and cultivar identification. Furthermore, we assessed the SSR flanking genome regions (25 kb) in silico to search for candidate genes related to stress resistance or associated with other agronomic traits of interest. Interestingly, at least 26 of the 118 detected genes seem to be related to fruit quality, plant development, and stress resistance. This study suggests that the molecular characterization of specific landraces of Japanese plum that have been adapted to extreme agroecosystems is a useful approach to localize candidate genes which are potentially interesting for breeding.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 543
Author(s):  
Shijing Feng ◽  
Jinshuang Niu ◽  
Zhenshan Liu ◽  
Lu Tian ◽  
Xiangyuan Wang ◽  
...  

Chinese pepper, referring to Zanthoxylum bungeanum Maxim. and Zanthoxylum armatum DC. species, is an important spice crop that has long attracted people’s interest due to its extensive application in Asian cuisine to improve taste. Numerous cultivars have been developed during the long history of domestication and cultivation. However, little to no information is available on the genetic diversity and evolutionary relationships of Chinese pepper cultivars and their historical diversification has not been clarified. Herein, we sequenced two nrDNA non-coding region markers, the external transcribed spacer (ETS) and the internal transcribed spacer 2 (ITS2), to assess genetic diversity and phylogenetic relationships among 39 cultivated and wild populations of Chinese pepper from eight provinces and to address the question of ancient demographic trends which were probably influenced by changing climate during evolutionary history. In total, 31 haplotypes were identified based on 101 polymorphism sites. Our results revealed relatively high level of genetic variation despite long-term cultivation of this crop. AMOVA revealed that genetic variation existed predominantly within provinces rather than among provinces. The genetic structure result based on haplotype network analysis largely reflected historical records, which suggested a Gansu origin for Chinese pepper and an ancient west-to-east spread of Chinese pepper circulating in China. We also provided evidence that changing Pleistocene climates had shaped the demographic trends of Chinese pepper. Taken together, our findings not only suggest that Chinese pepper is a dynamic genetic system that responds to evolutionary forces, but it also provides a fundamental genetic profile for the conservation and responsible exploitation of the extant germplasm of Chinese pepper and for improving the genetic basis for breeding the cultivars.


Sign in / Sign up

Export Citation Format

Share Document