scholarly journals Robust estimates of cuticular conductance to water on a stomatous leaf surface

Author(s):  
Jun Tominaga ◽  
Joseph Stinziano ◽  
David T. Hanson

In leaf gas exchange measurements, cuticular conductance to water (g) is indistinguishable from and included in stomatal conductance to water vapor (g). Here we developed a simple technique to isolate g by directly measuring leaf intercellular CO concentration (C) along with gas exchange during photosynthetic light induction. We derived stomatal conductance to CO (g) from the C independently of g. Plotting g against g during the early induction phase within ~10 min, we found a highly linear relationship with a positive intercept. Assuming negligible cuticular CO transport, complete stomatal closure occurs when g=0. Then, we considered the residual g (i.e., intercept) as g. Indeed, these g estimates succeeded in correcting the calculation. Our technique, owing to its robustness and increased throughput, will allow for more rapid screening of crops, more reliable gas exchange analysis, and more accurate prediction of plant function under natural environmental conditions.

2010 ◽  
Vol 113-116 ◽  
pp. 14-17
Author(s):  
Meng Hu ◽  
Shao Zhong Kang ◽  
Tai Sheng Du ◽  
Ling Tong

A reflection function was established, based on leaf gas exchange process and tested with experimental data of eight kinds of plants, i.e. tomato, muskmelon, capsicum, maize, grape, onion, Haloxylon Ammodendron Bunge and Caragana Karshiskii Kom, with multifarious biological characteristic, water and growing status. The function indicated that the leaf stomatal conductance could be linearly reflected by the ratio of humidity and CO2 concentration at leaf surface, and the behaviour of its slope could be recognized as an indicator of leaf gas exchange efficiency, which had a negative relationship with leaf water use efficiency (WUE). The results maybe increase our understanding of potential influences of leaf stomatal conductance on photosynthetic and transpiration gas exchange and leaf WUE.


2019 ◽  
Author(s):  
Christopher D. Muir

ABSTRACTStomatal pores control both leaf gas exchange and are one route for infection of internal plant tissues by many foliar pathogens, setting up the potential for tradeoffs between photosynthesis and defense. Anatomical shifts to lower stomatal density and/or size may also limit pathogen colonization, but such developmental changes could permanently reduce the gas exchange capacity for the life of the leaf. I developed and analyzed a spatially explicit model of pathogen colonization on the leaf as a function of stomatal size and density, anatomical traits which partially determine maximum rates of gas exchange. The model predicts greater stomatal size or density increases the probability of colonization, but the effect is most pronounced when the fraction of leaf surface covered by stomata is low. I also derived scaling relationships between stomatal size and density that preserves a given probability of colonization. These scaling relationships set up a potential anatomical conflict between limiting pathogen colonization and minimizing the fraction of leaf surface covered by stomata. Although a connection between gas exchange and pathogen defense has been suggested empirically, this is the first mathematical model connecting gas exchange and pathogen defense via stomatal anatomy. A limitation of the model is that it does not include variation in innate immunity and stomatal closure in response to pathogens. Nevertheless, the model makes predictions that can be tested with experiments and may explain variation in stomatal anatomy among plants. The model is generalizable to many types of pathogens, but lacks significant biological realism that may be needed for precise predictions.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 540a-540
Author(s):  
K.J. Prevete ◽  
R.T. Fernandez

Three species of herbaceous perennials were tested on their ability to withstand and recover from drought stress periods of 2, 4, and 6 days. Eupatorium rugosum and Boltonia asteroides `Snowbank' were chosen because of their reported drought intolerance, while Rudbeckia triloba was chosen based on its reported drought tolerance. Drought stress began on 19 Sept. 1997. Plants were transplanted into the field the day following the end of each stress period. The effects of drought on transpiration rate, stomatal conductance, and net photosynthetic rate were measured during the stress and throughout recovery using an infrared gas analysis system. Leaf gas exchange measurements were taken through recovery until there were no differences between the stressed plants and the control plants. Transpiration, stomatal conductance, and photosynthesis of Rudbeckia and Boltonia were not affected until 4 days after the start of stress. Transpiration of Eupatorium decreased after 3 days of stress. After rewatering, leaf gas exchange of Boltonia and Rudbeckia returned to non-stressed levels quicker than Eupatorium. Growth measurements were taken every other day during stress, and then weekly following transplanting. Measurements were taken until a killing frost that occurred on 3 Nov. There were no differences in the growth between the stressed and non-stressed plants in any of the species. Plants will be monitored throughout the winter, spring, and summer to determine the effects of drought on overwintering capability and regrowth.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 663
Author(s):  
James Bunce

Attempts to identify crop genetic material with larger growth stimulation at projected elevated atmospheric CO2 concentrations are becoming more common. The probability of reductions in photosynthesis and yield caused by short-term variation in CO2 concentration within elevated CO2 treatments in the free-air CO2 enrichment plots raises the question of whether similar effects occur in glasshouse or indoor chamber experiments. These experiments were designed to test whether even the normal, modest, cyclic variation in CO2 concentration typical of indoor exposure systems have persistent impacts on photosynthesis and growth, and to explore mechanisms underlying the responses observed. Wheat, cotton, soybeans, and rice were grown from seed in indoor chambers at a mean CO2 concentration of 560 μmol mol−1, with “triangular” cyclic variation with standard deviations of either 4.5 or 18.0 μmol mol−1 measured with 0.1 s sampling periods with an open path analyzer. Photosynthesis, stomatal conductance, and above ground biomass at 20 to 23 days were reduced in all four species by the larger variation in CO2 concentration. Tests of rates of stomatal opening and closing with step changes in light and CO2, and tests of responses to square-wave cycling of CO2 were also conducted on individual leaves of these and three other species, using a leaf gas exchange system. Reduced stomatal conductance due to larger amplitude cycling of CO2 during growth occurred even in soybeans and rice, which had equal rates of opening and closing in response to step changes in CO2. The gas exchange results further indicated that reduced mean stomatal conductance was not the only cause of reduced photosynthesis in variable CO2 conditions.


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 1377-1381 ◽  
Author(s):  
J. P. Privé ◽  
L. Russell ◽  
A. LeBlanc

A field trial was conducted over two growing seasons in a Ginger Gold apple orchard in Bouctouche, New Brunswick, Canada to examine the impact of Surround (95% kaolin clay) on leaf gas exchange [net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 (Ci) and transpiration (E)]. In 2004, a greater rate of Pn and gs was achieved at the higher than at the lower frequency of Surround applications. This was particularly notable at leaf temperatures exceeding 35°C. In 2005, no significant (P ≤ 0.05) differences among leaf residue groupings [Trace (< 0.5 g m-2), Low (0.5 to 2 g m-2), and High (≥ 2 g m-2)] were found for the four leaf gas exchange parameters at leaf temperatures ranging from 25 to 40°C. It would appear that under New Brunswick commercial orchard conditions, the application of Surround favours or has no effect on leaf gas exchange. Key words: Surround, particle film, leaf physiology, photosynthesis, stomatal conductance, intercellular CO2, transpiration


2020 ◽  
Author(s):  
Wellington L Almeida ◽  
Rodrigo T Ávila ◽  
Junior P Pérez-Molina ◽  
Marcela L Barbosa ◽  
Dinorah M S Marçal ◽  
...  

Abstract The overall coordination between gas exchanges and plant hydraulics may be affected by soil water availability and source-to-sink relationships. Here we evaluated how branch growth and mortality, leaf gas exchange and metabolism are affected in coffee (Coffea arabica L.) trees by drought and fruiting. Field-grown plants were irrigated or not, and maintained with full or no fruit load. Under mild water deficit, irrigation per se did not significantly impact growth but markedly reduced branch mortality in fruiting trees, despite similar leaf assimilate pools and water status. Fruiting increased net photosynthetic rate in parallel with an enhanced stomatal conductance, particularly in irrigated plants. Mesophyll conductance and maximum RuBisCO carboxylation rate remained unchanged across treatments. The increased stomatal conductance in fruiting trees over nonfruiting ones was unrelated to internal CO2 concentration, foliar abscisic acid (ABA) levels or differential ABA sensitivity. However, stomatal conductance was associated with higher stomatal density, lower stomatal sensitivity to vapor pressure deficit, and higher leaf hydraulic conductance and capacitance. Increased leaf transpiration rate in fruiting trees was supported by coordinated alterations in plant hydraulics, which explained the maintenance of plant water status. Finally, by preventing branch mortality, irrigation can mitigate biennial production fluctuations and improve the sustainability of coffee plantations.


2020 ◽  
Author(s):  
Karla Gasparini ◽  
Ana Carolina R. Souto ◽  
Mateus F. da Silva ◽  
Lucas C. Costa ◽  
Cássia Regina Fernandes Figueiredo ◽  
...  

ABSTRACTBackground and aimsTrichomes are epidermal structures with an enormous variety of ecological functions and economic applications. Glandular trichomes produce a rich repertoire of secondary metabolites, whereas non-glandular trichomes create a physical barrier against biotic and abiotic stressors. Intense research is underway to understand trichome development and function and enable breeding of more resilient crops. However, little is known on how enhanced trichome density would impinge on leaf photosynthesis, gas exchange and energy balance.MethodsPrevious work has compared multiple species differing in trichome density, instead here we analyzed monogenic trichome mutants in a single tomato genetic background (cv. Micro-Tom). We determined growth parameters, leaf spectral properties, gas exchange and leaf temperature in the hairs absent (h), Lanata (Ln) and Woolly (Wo) trichome mutants.Key resultsShoot dry mass, leaf area, leaf spectral properties and cuticular conductance were not affected by the mutations. However, the Ln mutant showed increased carbon assimilation (A) possibly associated with higher stomatal conductance (gs), since there were no differences in stomatal density or stomatal index between genotypes. Leaf temperature was furthermore reduced in Ln in the early hours of the afternoon.ConclusionsWe show that a single monogenic mutation can increase glandular trichome density, a desirable trait for crop breeding, whilst concomitantly improving leaf gas exchange and reducing leaf temperature.HIGHLIGHTA monogenic mutation in tomato increases trichome density and optimizes gas exchange and leaf temperature


2002 ◽  
Vol 29 (12) ◽  
pp. 1377 ◽  
Author(s):  
Katharina Siebke ◽  
Oula Ghannoum ◽  
Jann P. Conroy ◽  
Susanne von Caemmerer

This study investigates the effect of elevated CO2 partial pressure (pCO2)-induced stomatal closure on leaf temperature and gas exchange of C4 grasses. Two native Australian C4 grasses, Astrebla lappacea (Lindl.) Domin and Bothriochloa bladhii Kuntze, were grown at three different pCO2 (35, 70 and 120 Pa) in three matched, temperature-controlled glasshouse compartments. The difference between leaf and air temperature (ΔT) was monitored diurnally with thermocouples. ΔT increased with both step-increases of ambient pCO2. Average noon leaf temperature increased by 0.4 and 0.3°C for A. lappacea with the 35–70 and 70–120 Pa steps of pCO2 elevation, respectively. For B. bladhii, the increases were 0.5°C for both pCO2 steps. ΔT was strongly dependent on irradiance, pCO2 and air humidity. Leaf gas exchange was measured at constant temperature and high irradiance at the three growth pCO2. Under these conditions, CO2 assimilation saturated at 70 Pa, while stomatal conductance decreased by the same extent (0.58-fold) with both step-increases in pCO2, suggesting that whole-plant water use efficiency of C4 grasses would increase beyond a doubling of ambient pCO2. The ratio of intercellular to ambient pCO2 was not affected by short- or long-term doubling or near-tripling of pCO2, in either C4 species when measured under standard conditions.


2013 ◽  
Vol 844 ◽  
pp. 11-14
Author(s):  
Aidil Azhar ◽  
Jate Sathornkich ◽  
Ratchanee Rattanawong ◽  
Poonpipope Kasemsap

This experiment aimed to evaluate the leaf chlorophyll fluorescence and gas exchange response to drought conditions of young rubber plants with different scions. Buds from four genotypes of a progeny derived from crossed clones of RRIM600 x RRII105 from Nongkhai Rubber Research Center, T187, T186, T149 and T172, were grafted to RRIM 600 rootstocks. Eight-month old plants with two flushes were used in this study. Two levels of water treatment were used, drought condition (W1) and well-watered as control (W0). Leaf chlorophyll fluorescence, stomatal conductance (gs) and net photosynthesis rate (Pn) were investigated in three phases: before drought, during drought and after re-watering. Leaf gas exchange parameters were measured using Li-6400 (LiCor Inc.). Leaf chlorophyll fluorescence was measured using FluorPen FP 100 (Photon Systems Instruments). Before drought, genotype T186 had the greatest net photosynthesis rates followed by T172, T187 and T149; there was no difference in maximum quantum yield of photosystem II (Fv/Fm) and performance index on absorption basis (PIABS). Drought conditions caused reduction in stomatal conductance, net photosynthesis rates, and leaf chlorophyll fluorescence in all genotypes. In re-watering conditions, genotype T186 and T172 experienced quick recovery while the others showed partial recovery but the values of all parameters did not reach previous levels before treatment.


Satisfaction of a leaf’s need for CO 2 requires an intensive gas exchange between mesophyll and atmosphere; prevention of excessive water loss demands that gas exchange be kept low. Stomata open when a low CO 2 concentration in the guard cells triggers ( a ) uptake of K + in exchange of H + , ( b ) production of organic acids, and ( c ) import of Cl - . ‘Hydropassive’ stomatal closure (i.e. turgor loss without reduction of the solute content of the guard cell) appears insufficient to protect the plant from desiccation. An additional ‘hydroactive’ solute loss is necessary; it is brought about by (+)-abscisic acid (ABA) acting as feedback messenger between mesophyll and epidermis. Stomatal closure not only curbs water loss but improves water-use efficiency because transpiration is proportional to stomatal conductance (at constant temperature). In contrast, assimilation, following saturation kinetics with respect to intercellular CO 2 , is relatively insensitive to changes in stomatal conductance (as long as stomata are wide open). In Xanthium strumarium , the amplitude of stomatal responses to ABA depends on the concentration of CO 2 in the guard cells; the opposite statement is also true. These interactions cause stomata to behave like ‘adjustable control systems’ capable of giving priority either to CO 2 assimilation or to water husbandry.


Sign in / Sign up

Export Citation Format

Share Document