scholarly journals Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity

Author(s):  
Kolja Bergholz ◽  
Lara-Pauline Sittel ◽  
Michael Ristow ◽  
Florian Jeltsch ◽  
Lina Weiss

Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees (specialists) and hoverflies (generalists), respond to different land-use intensification measures, i.e. arable field cover (AFC), landscape heterogeneity (LH) and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverflies abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of both guilds. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seems to be highly landscape-specific.

Human Ecology ◽  
1994 ◽  
Vol 22 (3) ◽  
pp. 279-316 ◽  
Author(s):  
Clifford A. Behrens ◽  
Michael G. Baksh ◽  
Michel Mothes

2020 ◽  
Vol 13 (3) ◽  
pp. 163-175
Author(s):  
Adrián Lázaro-Lobo ◽  
Kristine O. Evans ◽  
Gary N. Ervin

AbstractInvasive species are widely recognized as a major threat to global diversity and an important factor associated with global change. Species distribution models (SDMs) have been widely applied to determine the range that invasive species could potentially occupy, but most examples focus on predictive variables at a single spatial scale. In this study, we simultaneously considered a broad range of variables related to climate, topography, land cover, land use, and propagule pressure to predict what areas in the southeastern United States are more susceptible to invasion by 45 invasive terrestrial plant species. Using expert-verified occurrence points from EDDMapS, we modeled invasion susceptibility at 30-m resolution for each species using a maximum entropy (MaxEnt) modeling approach. We then analyzed how environmental predictors affected susceptibility to invasion at different spatial scales. Climatic and land-use variables, especially minimum temperature of coldest month and distance to developed areas, were good predictors of landscape susceptibility to invasion. For most of the species tested, human-disturbed systems such as developed areas and barren lands were more prone to be invaded than areas that experienced minimal human interference. As expected, we found that landscape heterogeneity and the presence of corridors for propagule dispersal significantly increased landscape susceptibility to invasion for most species. However, we also found a number of species for which the susceptibility to invasion increased in landscapes with large core areas and/or less-aggregated patches. These exceptions suggest that even though we found the expected general patterns for susceptibility to invasion among most species, the influence of landscape composition and configuration on invasion risk is species specific.


2020 ◽  
Author(s):  
Aaron A. Smith ◽  
Doerthe Tetzlaff ◽  
Lukas Kleine ◽  
Marco Maneta ◽  
Chris Soulsby

Abstract. Quantifying how vegetation mediates water partitioning at different spatial and temporal scales in complex, managed catchments is fundamental for long-term sustainable land and water management. Estimations from ecohydrological models conceptualizing how vegetation regulates the inter-relationships between catchment water storage dynamics, evapotranspiration losses, and recharge/runoff fluxes are needed to assess water availability for a range of ecosystem services; and evaluate how these might change under increasing extreme events, such as droughts. Currently, the feedback mechanisms between water and mosaics of different vegetation/land cover are not well understood across spatial scales and the effects of scale on the skill of ecohydrological models needs to be clarified. We used the tracer-aided ecohydrological model EcH2O-iso in an intensively monitored 66 km2 mixed land-use catchment in NE Germany to quantify water flux-storage-age interactions at four model-grid resolutions (250, 500, 750, and 1000 m). This used a fusion of field (including precipitation, soil water, groundwater, and stream isotopes) and remote sensed data in the calibration. Multi-criteria calibration across the catchment at each resolution revealed some differences in the estimation of fluxes, storages, and water ages. Larger grid-resolutions were unable to replicate observed streamflow and distributed isotope dynamics in the way smaller pixels could. However, using isotope data in the calibration still helped in constraining the estimation of fluxes, storage and water ages at coarser resolutions. Despite using the same data and parameterisation for calibration at different grid resolutions, the modelled proportion of fluxes differed slightly at each resolution, with coarse models simulating higher evapotranspiration, lower relative transpiration, increased overland flow, and slower groundwater movement. Although the coarser resolutions also revealed higher uncertainty and lower overall model performance, the overall results were broadly consistent. The study shows that tracers provide effective calibration constraints on larger resolution ecohydrological modelling and help understand the influence of grid-resolution on the simulation of vegetation-soil interactions. This is essential in interpreting associated uncertainty in estimating land-use influence on large-scale blue (ground and surface water) and green (vegetation and evaporated water) fluxes, particularly for future environmental change.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 249
Author(s):  
Quanfeng Li ◽  
Zhe Dong ◽  
Guoming Du ◽  
Aizheng Yang

The intensified use of cultivated land is essential for optimizing crop planting practices and protecting food security. This study employed a telecoupling framework to evaluate the cultivated land use intensification rates in typical Chinese villages (village cultivated land use intensifications—VCLUIs). The pressure–state–response (PSR) model organizes the VCLUI indexes including the intensity press, output state, and structural response of cultivated land use. Empirical analysis conducted in Baiquan County, China, indicating that the cultivated land use intensification levels of the whole county were low. However, the intensifications of villages influenced by physical and geographic locations and socioeconomic development levels varied significantly. This paper also found that variations in the VCLUIs were mainly dependent on new labor-driven social subsystem differences. Thus, the expanding per capita farmland scales and increasing numbers of new agricultural business entities were critical in improving the VCLUI. Overall, the theoretical framework proposed in this study was demonstrated to be effective in analyzing interactions among the natural, social, and economic subsystems of the VCLUI. The findings obtained in this study potentially have important implications for future regional food security, natural stability, and agricultural land use sustainability.


2021 ◽  
Vol 30 (5) ◽  
pp. 1056-1069
Author(s):  
Xiaohua Wan ◽  
Xinli Chen ◽  
Zhiqun Huang ◽  
Han Y. H. Chen

Author(s):  
John J. Drewry ◽  
Sam Carrick ◽  
Nicole L. Mesman ◽  
Peter Almond ◽  
Karin Müller ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaëtane Le Provost ◽  
Jan Thiele ◽  
Catrin Westphal ◽  
Caterina Penone ◽  
Eric Allan ◽  
...  

AbstractLand-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Sign in / Sign up

Export Citation Format

Share Document