scholarly journals The National Burden of Influenza-Like Illness and Severe Respiratory Illness Overall and Associated with Nine Respiratory Viruses in South Africa, 2013-2015

Author(s):  
Stefano Tempia ◽  
Jocelyn Moyes ◽  
Adam Cohen ◽  
Sibongile Walaza ◽  
Meredith McMorrow ◽  
...  

Background Estimates of the disease burden associated with different respiratory viruses are severely limited in low- and middle-income countries, especially in Africa. Methods We estimated age-specific numbers and rates of medically and non-medically attended influenza-like illness (ILI) and severe respiratory illness (SRI) that were associated with influenza, respiratory syncytial virus (RSV), rhinovirus, human metapneumovirus, adenovirus, enterovirus and parainfluenza virus types 1-3 after adjusting for the attributable fraction (AF) of virus detection to illness in South Africa during 2013-2015. Rates were reported per 100,000 population. Results The mean annual rates were 51,383 and 4,196 for ILI and SRI, respectively. Of these, 26% (for ILI) and 46% (for SRI) were medically attended. Among outpatients with ILI, rhinovirus had the highest AF-adjusted rate (7,221), followed by influenza (6,443) and adenovirus (1,364); whereas, among inpatients with SRI, rhinovirus had the highest AF-adjusted rate (400), followed by RSV (247) and influenza (130). Rhinovirus (9,424) and RSV (2,026) had the highest AF-adjusted rates among children aged <5 years with ILI or SRI, respectively; whereas rhinovirus (757) and influenza (306) had the highest AF-adjusted rates among individuals aged ≥65 years with ILI or SRI, respectively Conclusions There was a substantial burden of ILI and SRI in South Africa during 2013-2015. Rhinovirus and influenza had a prominent disease burden among patients with ILI. Rhinovirus had the highest burden of illness among patients of any age with SRI, followed by RSV. RSV and influenza were the most prominent causes of SRI in children and the elderly, respectively.

2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Sibongile Walaza ◽  
Stefano Tempia ◽  
Halima Dawood ◽  
Ebrahim Variava ◽  
Nicole Wolter ◽  
...  

Abstract Background Data on the prevalence and impact of influenza–tuberculosis coinfection on clinical outcomes from high–HIV and –tuberculosis burden settings are limited. We explored the impact of influenza and tuberculosis coinfection on mortality among hospitalized adults with lower respiratory tract infection (LRTI). Methods We enrolled patients aged ≥15 years admitted with physician-diagnosed LRTI or suspected tuberculosis at 2 hospitals in South Africa from 2010 to 2016. Combined nasopharyngeal and oropharyngeal swabs were tested for influenza and 8 other respiratory viruses. Tuberculosis testing of sputum included smear microscopy, culture, and/or Xpert MTB/Rif. Results Among 6228 enrolled individuals, 4253 (68%) were tested for both influenza and tuberculosis. Of these, the detection rate was 6% (239/4253) for influenza, 26% (1092/4253) for tuberculosis, and 77% (3113/4053) for HIV. One percent (42/4253) tested positive for both influenza and tuberculosis. On multivariable analysis, among tuberculosis-positive patients, factors independently associated with death were age group ≥65 years compared with 15–24 years (adjusted odds ratio [aOR], 3.6; 95% confidence interval [CI], 1.2–11.0) and influenza coinfection (aOR, 2.3; 95% CI, 1.02–5.2). Among influenza-positive patients, laboratory-confirmed tuberculosis was associated with an increased risk of death (aOR, 4.5; 95% CI, 1.5–13.3). Coinfection with other respiratory viruses was not associated with increased mortality in patients positive for tuberculosis (OR, 0.7; 95% CI, 0.4–1.1) or influenza (OR, 1.6; 95% CI, 0.4–5.6). Conclusions Tuberculosis coinfection is associated with increased mortality in individuals with influenza, and influenza coinfection is associated with increased mortality in individuals with tuberculosis. These data may inform prioritization of influenza vaccines or antivirals for tuberculosis patients and inform tuberculosis testing guidelines for patients with influenza.


2021 ◽  
Author(s):  
Malefu Moleleki ◽  
Mignon du Plessis ◽  
Kedibone Ndlangisa ◽  
Cayla Reddy ◽  
Anne von Gottberg ◽  
...  

Background Pneumonia continues to be a leading cause of death globally; however, in >50% of cases, an etiological agent is not identified. We describe the use of a multi-pathogen platform, TaqMan array card (TAC) real-time PCR, for the detection of pathogens in patients hospitalized with severe respiratory illness (SRI). Methods We conducted prospective hospital-based surveillance for SRI among patients at two sentinel sites in South Africa between January and December 2017. Patients were included in this study if a blood specimen and at least one respiratory specimen (naso- and oro-pharyngeal (NP/OP) swabs and/or sputum) were available for testing. We tested respiratory specimens for 21 respiratory pathogens and blood samples for nine bacteria using TAC. Pathogen detection was compared by age group and HIV status using the chi-squared test. Results During 2017, 956 patients were enrolled in SRI surveillance, and of these, 637 (67%) patients were included in this study (637 blood, 487 NP/OP and 411 sputum specimens tested). At least one pathogen was detected in 83% (527/637) of patients. Common pathogens detected included H. influenzae (225/637; 35%), S. pneumoniae (224/637; 35%), rhinovirus (144/637; 23%), S. aureus (129/637; 20%), K. pneumoniae (85/637; 13%), M. tuberculosis (75/637; 12%), and respiratory syncytial virus (57/637; 9%). Multiple pathogens (≥2) were co-detected in 57% (364/637) of patients. Conclusion While use of a multi-pathogen platform was useful in the detection of a pathogen in the majority of the patients, pathogen co-detections were common and would need clinical assessment for usefulness in individual-level treatment and management decisions.


2021 ◽  
Vol 26 (29) ◽  
Author(s):  
Stefano Tempia ◽  
Sibongile Walaza ◽  
Jinal N Bhiman ◽  
Meredith L McMorrow ◽  
Jocelyn Moyes ◽  
...  

Background In South Africa, COVID-19 control measures to prevent SARS-CoV-2 spread were initiated on 16 March 2020. Such measures may also impact the spread of other pathogens, including influenza virus and respiratory syncytial virus (RSV) with implications for future annual epidemics and expectations for the subsequent northern hemisphere winter. Methods We assessed the detection of influenza and RSV through facility-based syndromic surveillance of adults and children with mild or severe respiratory illness in South Africa from January to October 2020, and compared this with surveillance data from 2013 to 2019. Results Facility-based surveillance revealed a decline in influenza virus detection during the regular season compared with previous years. This was observed throughout the implementation of COVID-19 control measures. RSV detection decreased soon after the most stringent COVID-19 control measures commenced; however, an increase in RSV detection was observed after the typical season, following the re-opening of schools and the easing of measures. Conclusion COVID-19 non-pharmaceutical interventions led to reduced circulation of influenza and RSV in South Africa. This has limited the country’s ability to provide influenza virus strains for the selection of the annual influenza vaccine. Delayed increases in RSV case numbers may reflect the easing of COVID-19 control measures. An increase in influenza virus detection was not observed, suggesting that the measures may have impacted the two pathogens differently. The impact that lowered and/or delayed influenza and RSV circulation in 2020 will have on the intensity and severity of subsequent annual epidemics is unknown and warrants close monitoring.


Author(s):  
Ian Mitchell ◽  
Abby Li ◽  
Candice L. Bjornson ◽  
Krista L. Lanctot ◽  
Bosco A. Paes ◽  
...  

Objective This study aimed to evaluate palivizumab (PVZ) use, trends in indications, and outcomes of respiratory illness hospitalizations (RIH) and respiratory syncytial virus hospitalizations (RSVH). Study Design It involves a large, Canadian prospective (2005–2017) observational multicenter study of children at high risk for RSV infection. Results A total of 25,003 infants (56.3% male) were enrolled at 32 sites; 109,579 PVZ injections were administered. Indications included: prematurity (63.3%); “miscellaneous” (17.8%); hemodynamically significant congenital heart disease (10.5%); bronchopulmonary dysplasia/chronic lung disease (8.4%). The “miscellaneous” group increased over time (4.4% in 2005–2006 to 22.5% in 2016–2017) and included: trisomy 21, airway anomalies, pulmonary disorders, cystic fibrosis, neurological impairments, immunocompromised, cardiac aged >2 years, multiple conditions, and a residual “unclassified” group. Adherence measured by expected versus actual doses plus correct interdose interval was 64.7%. A total of 2,054 RIH occurred (6.9%); 198 (9.6%) required intubation. Three hundred thirty-seven hospitalized children were RSV-positive (overall RSVH 1.6%). Risk factors for RSVH included having siblings, attending daycare, family history of atopy, smoking exposure, and crowded household. Infants with 5 risk factors were 9.0 times (95% CI or confidence interval 4.4–18.2; p < 0.0005) more likely to have RSVH than infants without risk factors. Three adverse events occurred; none were fatal. Conclusion Results are relevant to both clinicians and decision-makers. We confirmed the safety of PVZ. Use of PVZ increased steadily for children with miscellaneous conditions and medical complexity. Medical and social factors pose a risk for severe RIH and RSVH with accompanying burden of illness. A vaccine that protects against RSV is urgently required. Key Points


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Roger Morbey ◽  
Alex J. Elliot ◽  
Maria Zambon ◽  
Richard Pebody ◽  
Gillian E. Smith

ObjectiveTo improve understanding of the relative burden of differentcausative respiratory pathogens on respiratory syndromic indicatorsmonitored using syndromic surveillance systems in England.IntroductionPublic Health England (PHE) uses syndromic surveillance systemsto monitor for seasonal increases in respiratory illness. Respiratoryillnesses create a considerable burden on health care services andtherefore identifying the timing and intensity of peaks of activity isimportant for public health decision-making. Furthermore, identifyingthe incidence of specific respiratory pathogens circulating in thecommunity is essential for targeting public health interventionse.g. vaccination. Syndromic surveillance can provide early warningof increases, but cannot explicitly identify the pathogens responsiblefor such increases.PHE uses a range of general and specific respiratory syndromicindicators in their syndromic surveillance systems, e.g. “allrespiratory disease”, “influenza-like illness”, “bronchitis” and“cough”. Previous research has shown that “influenza-like illness”is associated with influenza circulating in the community1whilst“cough” and “bronchitis” syndromic indicators in children under 5are associated with respiratory syncytial virus (RSV)2, 3. However, therelative burden of other pathogens, e.g. rhinovirus and parainfluenzais less well understood. We have sought to further understand therelationship between specific pathogens and syndromic indicators andto improve estimates of disease burden. Therefore, we modelled theassociation between pathogen incidence, using laboratory reports andhealth care presentations, using syndromic data.MethodsWe used positive laboratory reports for the following pathogens as aproxy for community incidence in England: human metapneumovirus(HMPV), RSV, coronavirus, influenza strains, invasivehaemophilusinfluenzae, invasivestreptococcus pneumoniae, mycoplasmapneumoniae, parainfluenza and rhinovirus. Organisms were chosenthat were found to be important in previous work2and were availablefrom routine laboratory testing. Syndromic data included consultationswith family doctors (called General Practitioners or GPs), calls to anational telephone helpline “NHS 111” and attendances at emergencydepartments (EDs). Associations between laboratory reports andsyndromic data were examined over four winter seasons (weeks40 to 20), between 2011 and 2015. Multiple linear regression was usedto model correlations and to estimate the proportion of syndromicconsultations associated with specific pathogens. Finally, burdenestimates were used to infer the proportion of patients affected byspecific pathogens that would be diagnosed with different symptoms.ResultsInfluenza and RSV exhibited the greatest seasonal variation andwere responsible for the strongest associated burden on generalrespiratory infections. However, associations were found with theother pathogens and the burden ofstreptococcus pneumoniaewasimportant in adult age groups (25 years and over).The model estimates suggested that only a small proportion ofpatients with influenza receive a specific diagnosis that is coded toan “influenza-like illness” syndromic indicator, (6% for both GPin-hours consultations and for emergency department attendances),compared to a more general respiratory diagnosis. Also, patients withinfluenza calling NHS 111 were more likely to receive a diagnosisof fever or cough than cold/flu. Despite these findings, the specificsyndromic indicators remained more sensitive to changes in influenzaincidence than the general indicators.ConclusionsThe majority of patients affected by a seasonal respiratory pathogenare likely to receive a non-specific respiratory diagnosis. Therefore,estimates of community burden using more specific syndromicindicators such as “influenza-like illness” are likely to be a severeunderestimate. However, these specific indicators remain importantfor detecting changes in incidence and providing added intelligenceon likely causative pathogens.Specific syndromic indicators were associated with multiplepathogens and we were unable to identify indicators that were goodmarkers for pathogens other than influenza or RSV. However, futurework focusing on differences between ages and the relative levels ofa range of pathogens may be able to provide estimates for the mix ofpathogens present in the community in real-time.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rushabh Waghmode ◽  
Sushama Jadhav ◽  
Vijay Nema

As per the 2019 report of the National Health Portal of India, 41,996,260 cases and 3,740 deaths from respiratory infections were recorded across India in 2018. India contributes to 18% of the global population, with severe acute respiratory infection (SARI) as one of the prominent causes of mortality in children &gt;5 years of age. Measures in terms of the diagnosis and surveillance of respiratory infections are taken up globally to discover their circulating types, detect outbreaks, and estimate the disease burden. Similarly, the purpose of this review was to determine the prevalence of respiratory infections in various regions of India through published reports. Understanding the pattern and prevalence of various viral entities responsible for infections and outbreaks can help in designing better strategies to combat the problem. The associated pathogens comprise respiratory syncytial virus (RSV), rhinovirus, influenza virus, parainfluenza virus, adenovirus, etc. Identification of these respiratory viruses was not given high priority until now, but the pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has sensitized our system to be alert about the burden of existing infections and to have proper checks for emerging ones. Most of the studies reported to date have worked on the influenza virus as a priority. However, the data describing the prevalence of other respiratory viruses with their seasonal pattern have significant epidemiological value. A comprehensive literature search was done to gather data from all geographical regions of India comprising all states of India from 1970 to 2020. The same has been compared with the global scenario and is being presented here.


Author(s):  
Souhir Saadi ◽  
Ouafa Kallala ◽  
Imene Fodha ◽  
Amira Jerbi ◽  
Meriem BenHamida-Rebai ◽  
...  

Abstract Objective Respiratory viruses are the most important cause of lower respiratory tract infections (LRTI) in children. Meteorological factors can influence viral outbreaks. The objective of this study was to determine the association between climate variables and respiratory virus detection. Methods Multicenter prospective 1-year surveillance was conducted among children hospitalized for LRTI in Tunisia. Nasopharyngeal aspirates were tested by direct immunofluorescence assay (DIFA) for the detection of respiratory syncytial virus (RSV); adenovirus (AdV); influenza virus (IFV) A and B; and parainfluenza virus 1, 2, and 3 (PIV1/2/3). Samples were further analyzed by reverse-transcription polymerase chain reaction for the detection of human metapneumovirus (hMPV). Monthly meteorological data were determined by consulting the National Institute of Meteorology and the World Weather Online Meteorological Company websites. Pearson's correlation tests were used to determine the statistical association between the detection of respiratory viruses and climatic characteristics. Results Among 572 patients, 243 (42.5%) were positive for at least one virus. The most frequently detected viruses by DIFA were RSV (30.0%), followed by IFVA (3.8%), IFVB (3.5%), PIV (0.9%), and AdV (0.9%). HMPV was detected in 13 RSV-negative samples (3.3%). Dual infections were detected in seven cases (1.2%). Monthly global respiratory viruses and RSV detections correlated significantly with temperature, rainfall, cloud cover, wind speed, wind temperature, and duration of sunshine. Monthly IFV detection significantly correlated with rainfall, wind speed, wind temperature, and duration of sunshine. HMPV detection significantly correlated with temperature and wind temperature. Conclusion Respiratory viral outbreaks are clearly related to meteorological factors in Tunisia.


Author(s):  
Fahimeh Sadat Aghamirmohammadali ◽  
Kaveh Sadeghi ◽  
Nazanin Zahra Shafiei-Jandaghi ◽  
Zahra Khoban ◽  
Talat Mokhtari-Azad ◽  
...  

Background and Objectives: Severe acute respiratory infections (SARI) remain an important cause for childhood morbid- ity worldwide. We designed a research with the objective of finding the frequency of respiratory viruses, particularly WU and KI polyomaviruses (WUPyV & KIPyV), human coronaviruses (HCoVs), human respiratory syncytial virus (HRSV) and human parechovirus (HPeV) in hospitalized children who were influenza negative. Materials and Methods: Throat swabs were collected from children younger than 5 years who have been hospitalized for SARI and screened for WUPyV, KIPyV, HCoVs, HRSV and HPeV using Real time PCR. Results: A viral pathogen was identified in 23 (11.16%) of 206 hospitalized children with SARI. The rate of virus detection was considerably greater in infants <12 months (78.2%) than in older children (21.8%). The most frequently detected vi- ruses were HCoVs with 7.76% of positive cases followed by KIPyV (2%) and WUPyV (1.5%). No HPeV and HRSV were detected in this study. Conclusion: This research shown respiratory viruses as causes of childhood acute respiratory infections, while as most of mentioned viruses usually causes mild respiratory diseases, their frequency might be higher in outpatient children. Mean- while as HRSV is really sensitive to inactivation due to environmental situations and its genome maybe degraded, then for future studies, we need to use fresh samples for HRSV detection. These findings addressed a need for more studies on viral respiratory tract infections to help public health.


Sign in / Sign up

Export Citation Format

Share Document