scholarly journals Variations in δ13CDIC and influencing factors in a shallow macrophytic lake on the Qinghai-Tibetan Plateau: implications for the lake carbon cycle

Author(s):  
Yanxiang Jin ◽  
Xin Jin

The primary sources of dissolved inorganic carbon (DIC) in water are carbonate materials and CO produced during the biological processing of organic matter. The application of carbon isotope techniques to terrestrial and aquatic ecosystems can accurately elucidate carbon fluxes and other carbon cycle processes in these systems. Lake ecosystems on the Qinghai-Tibetan Plateau are fragile and sensitive to changes in climate and environment. This study explored the relationship between the carbon isotopic composition (δC) of the DIC (δC) in the Genggahai Lake, the lake environment, and the climate of the watershed based on the observed physicochemical parameters of water in areas with different types of submerged macrophyte communities, combined with changes in the temperature and precipitation during the same period. Overall, the δC of the Genggahai Basin exhibited a large range of values, with an average δC for inflowing spring water (δC) of –11.1 ‰, which was the most negative, followed by an average δC value of –10.8 ‰ for that from the Shazhuyu River (δC) and an averageδC value of –6.91 ‰ for lake water (δC). Variations in the photosynthetic activity intensity of different aquatic plants yield significantly changing δC values in areas with varied aquatic plant communities. Hydrochemical observations revealed that δC and aquatic plant photosynthesis primarily affected the differences in the δC values of the Genggahai Lake, thereby identifying them as the key components of the lake carbon cycle.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 263
Author(s):  
Jose Javier Álvaro ◽  
Mónica Sánchez-Román ◽  
Klaas G.J. Nierop ◽  
Francien Peterse

The microbial communities inferred in silica sinter rocks, based on multiscale morphological features (fabrics and textures) and the presence of lipid biomarkers and their carbon isotopic composition, are evaluated in the Krýsuvík geothermal area of Iceland. Close to vent environments (T > 75 °C and pH 1.7‒3), stream floors are capped with homogeneous vitreous crusts and breccia levels, with no distinct recognizable silicified microbes. About 4 m far from the vents (T 75‒60 °C and pH 3‒6) and beyond (T < 60 °C and pH 6‒7.6), microbial sinters, including wavy and palisade laminated and bubble fabrics, differ between abandoned meanders and desiccated ponds. Fabric and texture variances are related to changes in the ratio of filament/coccoid silicified microbes and associated porosity. Coatings of epicellular silica, less than 2 µm thick, favor identification of individual microbial filaments, whereas coalescence of opal spheres into agglomerates precludes recognition of original microbial textures and silicified microbes. Episodic fluctuations in the physico-chemical conditions of surface waters controlled the acidic hydrolysis of biomarkers. Wavy laminated fabrics from pond margins comprise fatty acids, mono- and dialkyl glycerol, mono- and diethers, monoalkyl glycerol esters and small traces of 10-methyl branched C16 and C18 fatty acids and archaeol, indicative of intergrowths of cyanobacteria, Aquificales, and sulfate reducing bacteria and methanogenic archaea. In contrast, wavy laminated fabrics from abandoned meanders and palisade laminated fabrics from ponds differ in their branched fatty acids and the presence vs. absence of bacteriohopanetetrol, reflecting different cyanobacterial contributions. δ13C values of biomarkers range from −22.7 to −32.9‰, but their values in the wavy (pond) and bubble fabrics have much wider ranges than those of the wavy (meander), palisade, and vitreous fabrics, reflecting dissolved inorganic carbon (DIC) sources and a decrease in 13C downstream outflow channels, with heavier values closer to vents and depleted values in ponds.


2012 ◽  
Vol 8 (3) ◽  
pp. 2075-2110 ◽  
Author(s):  
G. Paris ◽  
Y. Donnadieu ◽  
V. Beaumont ◽  
F. Fluteau ◽  
Y. Goddéris

Abstract. The Triassic-Jurassic boundary (TJB) is associated with one of the five largest mass extinctions of the Phanerozoic. A deep carbon cycle perturbation and a carbonate production crisis are observed during the late Triassic. The Central Atlantic Magmatic Province (CAMP), one of the most important large igneous provinces of the Phanerozoic, emplaced at the TJB. To understand the carbon cycle perturbations observed at the TJB, we investigate the consequences of CO2 degassing associated to the CAMP emplacement on atmospheric and oceanic carbon cycle. The CO2 input within the atmosphere due to volcanism has been modeled using a global biogeochemical cycle box model (COMBINE) coupled with a climate model (FOAM). Weathering fluxes and CO2 equilibrium are constrained by the Rhaetian paleogeography and different scenarios of the CAMP emplacement are modeled. The study focuses (1) on the geological record and the carbonate productions crisis and (2) on the sedimentary carbon isotope record. For point (1), comparison of different modeling scenarios shows that a Gaussian CO2 emission distribution over the duration of the main activity phase of the CAMP fails in reproducing any of the geological observations, mainly the carbonate production crisis observed in the late Rhaetian sediments. Contrastingly, intense degassing peaks lead to successive decrease in carbonate production as observed in the geological record. For point (2), the perturbations of carbon cycle due to the degassing of CO2 with a mantellic carbon isotopic composition of −5‰ do not reproduce the intensity of the observed carbon isotope excursions. This was achieved in our model by assuming a mantellic carbon isotopic composition of −20‰. Even if this hypothesis requires further investigations, such low values may be associated to degassing of carbon from pools of light isotopic carbon located at the transition zone (Cartigny, 2010), possibly linked to setting of large igneous provinces (LIP's). Breakdown of biological primary productivity can also partially account for the sedimentary carbon isotope excursions and for the observed increase of atmospheric pCO2.


Radiocarbon ◽  
1992 ◽  
Vol 34 (3) ◽  
pp. 636-645 ◽  
Author(s):  
Ramon Aravena ◽  
S. L. Schiff ◽  
S. E. Trumbore ◽  
P. J. Dillon ◽  
Richard Elgood

Dissolved inorganic carbon (DIC) is the main acid buffer in forested lake watersheds in Canada. We used carbon isotopes (13C, 14C) to evaluate the production and cycling of DIC in an acid-sensitive lake watershed of the Precambrian Shield. Soil CO2, groundwater and stream DIC were characterized chemically and isotopically. Soil CO2 concentration profiles reflect both changes in production and in losses due to diffusion. δ13C soil CO2 profiles (δ13C values of −23‰ in summer, slightly enriched during the fall and −25%‰ during the winter) are a reflection of the isotopic composition of the sources and changes in isotopic fractionation due to diffusion. Carbon isotopic composition (13C, 14C) of the groundwater and stream DIC clearly indicate that weathering of silicates by soil CO2 is the main source of DIC in these watersheds. 14C data show that, in addition to recent groundwater, an older groundwater component with depleted 14C activity is also present in the bedrock. The carbon isotope pattern in the groundwater also implies that, besides the main springtime recharge events, contributions to the groundwater may also occur during late winter/early spring.


Author(s):  
Robert A. Berner

A model (GEOCARB) of the long–term, or multimillion year, carbon cycle has been constructed which includes quantitative treatment of (1) uptake of atmospheric CO 2 by the weathering of silicate and carbonate rocks on the continents, and the deposition of carbonate minerals and organic matter in oceanic sediments; and (2) the release of CO 2 to the atmosphere via the weathering of kerogen in sedimentary rocks and degassing resulting from the volcanic–metamorphic–diagenetic breakdown of carbonates and organic matter at depth. Sensitivity analysis indicates that an important factor affecting CO 2 was the rise of vascular plants in the Palaeozoic. A large Devonian drop in CO 2 was brought about primarily by the acceleration of weathering of silicate rock by the development of deeply rooted plants in well–drained upland soils. The quantitative effect of this accelerated weathering has been crudely estimated by present–day field studies where all factors affecting weathering, other than the presence or absence of vascular plants, have been held relatively constant. An important additional factor, bringing about a further CO 2 drop into the Carboniferous and Permian, was enhanced burial of organic matter in sediments, due probably to the production of microbially resistant plant remains (e.g. lignin). Phanerozoic palaeolevels of atmospheric CO 2 calculated from the GEOCARB model generally agree with independent estimates based on measurements of the carbon isotopic composition of palaeosols and the stomatal index for fossil plants. Correlation of CO 2 levels with estimates of palaeoclimate suggests that the atmospheric greenhouse effect has been a major factor in controlling global climate over the past 600 million years.


Radiocarbon ◽  
2017 ◽  
Vol 60 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Yuan Li ◽  
Mingrui Qiang ◽  
Yanxiang Jin ◽  
Li Liu ◽  
Aifeng Zhou ◽  
...  

AbstractTerrestrial plant remains in the sediments of lakes from semi-arid and arid regions are rare and therefore the establishment of a sediment chronology depends on accurate assessment of the reservoir effect of the lake water. In a study of Genggahai Lake in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau, we used accelerator mass spectrometry radiocarbon (AMS 14C) dating to determine the age of (1) dissolved inorganic carbon in the water (DICLW), (2) macrophyte remains in the uppermost samples of core sediments, (3) living P. pectinatus in the lake, and (4) dissolved inorganic carbon of spring water in the catchment. The results show that the ages of the DICLW (910 14C yr BP on average) were much younger than the ages of the groundwater (6330 14C yr BP on average), which may result mainly from CO2 exchange between the lake water and the atmosphere. In addition, the 14C ages of DICLW and macrophyte remains in the uppermost core sediments varied from site to site within the lake, which we ascribe to the different photosynthesis rates of Chara spp. and vascular plants. The higher photosynthesis rate of Chara spp. decreases lake-water pCO2, which leads to more atmospheric CO2 being absorbed by the lake water, and thereby greatly reducing the age of carbon species in areas dominated by Chara spp. Although Genggahai Lake is well mixed, the differences between the apparent ages of the lake water are significantly modulated by the photosynthesis intensity of submerged plants.


Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 540-543 ◽  
Author(s):  
Daniel P. Schrag ◽  
John. A. Higgins ◽  
Francis A. Macdonald ◽  
David T. Johnston

We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O2or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.


Sign in / Sign up

Export Citation Format

Share Document