scholarly journals Distance based clustering of class association rules to build a compact, accurate and descriptive classifier

Author(s):  
Jamolbek Mattiev ◽  
Branko Kavsek

Huge amounts of data are being collected and analyzed nowadays. By using the popular rule-learning algorithms, the number of rule discovered on those ?big? datasets can easily exceed thousands. To produce compact, understandable and accurate classifiers, such rules have to be grouped and pruned, so that only a reasonable number of them are presented to the end user for inspection and further analysis. In this paper, we propose new methods that are able to reduce the number of class association rules produced by ?classical? class association rule classifiers, while maintaining an accurate classification model that is comparable to the ones generated by state-of-the-art classification algorithms. More precisely, we propose new associative classifiers, called DC, DDC and CDC, that use distance-based agglomerative hierarchical clustering as a post-processing step to reduce the number of its rules, and in the rule-selection step, we use different strategies (based on database coverage and cluster center) for each algorithm. Experimental results performed on selected datasets from the UCI ML repository show that our classifiers are able to learn classifiers containing significantly fewer rules than state-of-the-art rule learning algorithms on datasets with a larger number of examples. On the other hand, the classification accuracy of the proposed classifiers is not significantly different from state-of-the-art rule-learners on most of the datasets.

2020 ◽  
Vol 10 (20) ◽  
pp. 7013
Author(s):  
Jamolbek Mattiev ◽  
Branko Kavsek

Building accurate and compact classifiers in real-world applications is one of the crucial tasks in data mining nowadays. In this paper, we propose a new method that can reduce the number of class association rules produced by classical class association rule classifiers, while maintaining an accurate classification model that is comparable to the ones generated by state-of-the-art classification algorithms. More precisely, we propose a new associative classifier that selects “strong” class association rules based on overall coverage of the learning set. The advantage of the proposed classifier is that it generates significantly smaller rules on bigger datasets compared to traditional classifiers while maintaining the classification accuracy. We also discuss how the overall coverage of such classifiers affects their classification accuracy. Performed experiments measuring classification accuracy, number of classification rules and other relevance measures such as precision, recall and f-measure on 12 real-life datasets from the UCI ML repository (Dua, D.; Graff, C. UCI Machine Learning Repository. Irvine, CA: University of California, 2019) show that our method was comparable to 8 other well-known rule-based classification algorithms. It achieved the second-highest average accuracy (84.9%) and the best result in terms of average number of rules among all classification methods. Although not achieving the best results in terms of classification accuracy, our method proved to be producing compact and understandable classifiers by exhaustively searching the entire example space.


Author(s):  
Maria-Luiza Antonie ◽  
David Chodos ◽  
Osmar Zaïane

The chapter introduces the associative classifier, a classification model based on association rules, and describes the three phases of the model building process: rule generation, pruning, and selection. In the first part of the chapter, these phases are described in detail, and several variations on the associative classifier model are presented within the context of the relevant phase. These variations are: mining data sets with re-occurring items, using negative association rules, and pruning rules using graph-based techniques. Each of these departs from the standard model in a crucial way, and thus expands the classification potential. The second part of the chapter describes a system, ARC-UI that allows a user to analyze the results of classifying an item using an associative classifier. This system uses an intuitive, Web-based interface and, with this system, the user is able to see the rules that were used to classify an item, modify either the item being classified or the rule set that was used, view the relationship between attributes, rules and classes in the rule set, and analyze the training data set with respect to the item being classified.


2020 ◽  
Vol 34 (03) ◽  
pp. 2594-2601
Author(s):  
Arjun Akula ◽  
Shuai Wang ◽  
Song-Chun Zhu

We present CoCoX (short for Conceptual and Counterfactual Explanations), a model for explaining decisions made by a deep convolutional neural network (CNN). In Cognitive Psychology, the factors (or semantic-level features) that humans zoom in on when they imagine an alternative to a model prediction are often referred to as fault-lines. Motivated by this, our CoCoX model explains decisions made by a CNN using fault-lines. Specifically, given an input image I for which a CNN classification model M predicts class cpred, our fault-line based explanation identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class calt. We argue that, due to the conceptual and counterfactual nature of fault-lines, our CoCoX explanations are practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, showing that CoCoX significantly outperforms the state-of-the-art explainable AI models. Our implementation is available at https://github.com/arjunakula/CoCoX


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Min-Ling Zhang ◽  
Jun-Peng Fang ◽  
Yi-Bo Wang

In multi-label classification, the task is to induce predictive models which can assign a set of relevant labels for the unseen instance. The strategy of label-specific features has been widely employed in learning from multi-label examples, where the classification model for predicting the relevancy of each class label is induced based on its tailored features rather than the original features. Existing approaches work by generating a group of tailored features for each class label independently, where label correlations are not fully considered in the label-specific features generation process. In this article, we extend existing strategy by proposing a simple yet effective approach based on BiLabel-specific features. Specifically, a group of tailored features is generated for a pair of class labels with heuristic prototype selection and embedding. Thereafter, predictions of classifiers induced by BiLabel-specific features are ensembled to determine the relevancy of each class label for unseen instance. To thoroughly evaluate the BiLabel-specific features strategy, extensive experiments are conducted over a total of 35 benchmark datasets. Comparative studies against state-of-the-art label-specific features techniques clearly validate the superiority of utilizing BiLabel-specific features to yield stronger generalization performance for multi-label classification.


2021 ◽  
pp. 1-13
Author(s):  
Qingtian Zeng ◽  
Xishi Zhao ◽  
Xiaohui Hu ◽  
Hua Duan ◽  
Zhongying Zhao ◽  
...  

Word embeddings have been successfully applied in many natural language processing tasks due to its their effectiveness. However, the state-of-the-art algorithms for learning word representations from large amounts of text documents ignore emotional information, which is a significant research problem that must be addressed. To solve the above problem, we propose an emotional word embedding (EWE) model for sentiment analysis in this paper. This method first applies pre-trained word vectors to represent document features using two different linear weighting methods. Then, the resulting document vectors are input to a classification model and used to train a text sentiment classifier, which is based on a neural network. In this way, the emotional polarity of the text is propagated into the word vectors. The experimental results on three kinds of real-world data sets demonstrate that the proposed EWE model achieves superior performances on text sentiment prediction, text similarity calculation, and word emotional expression tasks compared to other state-of-the-art models.


Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 226
Author(s):  
Wenzel Pilar von Pilchau ◽  
Anthony Stein ◽  
Jörg Hähner

State-of-the-art Deep Reinforcement Learning Algorithms such as DQN and DDPG use the concept of a replay buffer called Experience Replay. The default usage contains only the experiences that have been gathered over the runtime. We propose a method called Interpolated Experience Replay that uses stored (real) transitions to create synthetic ones to assist the learner. In this first approach to this field, we limit ourselves to discrete and non-deterministic environments and use a simple equally weighted average of the reward in combination with observed follow-up states. We could demonstrate a significantly improved overall mean average in comparison to a DQN network with vanilla Experience Replay on the discrete and non-deterministic FrozenLake8x8-v0 environment.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


2012 ◽  
Vol 24 (06) ◽  
pp. 513-524
Author(s):  
Mohsen Alavash Shooshtari ◽  
Keivan Maghooli ◽  
Kambiz Badie

One of the main objectives of data mining as a promising multidisciplinary field in computer science is to provide a classification model to be used for decision support purposes. In the medical imaging domain, mammograms classification is a difficult diagnostic task which calls for development of automated classification systems. Associative classification, as a special case of association rules mining, has been adopted in classification problems for years. In this paper, an associative classification framework based on parallel mining of image blocks is proposed to be used for mammograms discrimination. Indeed, association rules mining is applied to a commonly used mammography image database to classify digital mammograms into three categories, namely normal, benign and malign. In order to do so, first images are preprocessed and then features are extracted from non-overlapping image blocks and discretized for rule discovery. Association rules are then discovered through parallel mining of transactional databases which correspond to the image blocks, and finally are used within a unique decision-making scheme to predict the class of unknown samples. Finally, experiments are conducted to assess the effectiveness of the proposed framework. Results show that the proposed framework proved successful in terms of accuracy, precision, and recall, and suggest that the framework could be used as the core of any future associative classifier to support mammograms discrimination.


2021 ◽  
Author(s):  
Phongsathorn Kittiworapanya ◽  
Kitsuchart Pasupa ◽  
Peter Auer

<div>We assessed several state-of-the-art deep learning algorithms and computer vision techniques for estimating the particle size of mixed commercial waste from images. In waste management, the first step is often coarse shredding, using the particle size to set up the shredder machine. The difficulty is separating the waste particles in an image, which can not be performed well. This work focused on estimating size by using the texture from the input image, captured at a fixed height from the camera lens to the ground. We found that EfficientNet achieved the best performance of 0.72 on F1-Score and 75.89% on accuracy.<br></div>


2020 ◽  
Vol 34 (04) ◽  
pp. 3316-3323
Author(s):  
Qingpeng Cai ◽  
Ling Pan ◽  
Pingzhong Tang

Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.


Sign in / Sign up

Export Citation Format

Share Document