scholarly journals Genetic trend of functional productive life in the population of black and white cattle in Serbia

Genetika ◽  
2018 ◽  
Vol 50 (3) ◽  
pp. 855-862 ◽  
Author(s):  
Dragan Stanojevic ◽  
Radica Djedovic ◽  
Vladan Bogdanovic ◽  
Nikola Raguz ◽  
Denis Kucevic ◽  
...  

This research was conducted with the aim ?f estimating genetic trend for a functional length of productive life (FLPL) in the population of Black and White cattle in Serbia. Research and bulls genetic evaluation for functional longevity were performed on a set of data provided by Agricultural Corporation Belgrade AD (PKB) which contained data on longevity and origin of 22109 cows out of which 26% records were right-censored. Functional length of productive life (FPLP) represents a time period from the first calving to culling or censoring corrected for milk production. Breeding values were estimated using Weibull method of proportional risks within survival analysis a genetic trend for FLPL was calculated using of a regression analysis. The cows included in the analysis were on average first calved in the age of 809 days and had an average share of 81.9% genes of Holstein Friesian breed. An average length of productive life was 1267 days (41.6 months). Distribution of bull standardised breeding values did not statistically significantly differ from normal distribution. An average standardised breeding value was 99. A slightly positive genetic trend was determined, that is, the length of functional productive life was by selection increased by 0.021 day at an annual level while a reliability of estimated breeding values showed a negative trend.

2017 ◽  
Vol 57 (4) ◽  
pp. 760 ◽  
Author(s):  
Heydar Ghiasi ◽  
Majbritt Felleki

The present study explored the possibility of selection for uniformity of days from calving to first service (DFS) in dairy cattle. A double hierarchical generalised linear model with an iterative reweighted least-squares algorithm was used to estimate covariance components for the mean and dispersion of DFS. Data included the records of 27 113 Iranian Holstein cows (parity, 1–6) in 15 herds from 1981 to 2007. The estimated additive genetic variance for the mean and dispersion were 32.25 and 0.0139; both of these values had low standard errors. The genetic standard deviation for dispersion of DFS was 0.117, indicating that decreasing the estimated breeding value of dispersion by one genetic standard deviation can increase the uniformity by 12%. A strong positive genetic correlation (0.689) was obtained between the mean and dispersion of DFS. This genetic correlation is favourable since one of the aims of breeding is to simultaneously decrease the mean and increase the uniformity of DFS. The Spearman rank correlations between estimated breeding values in the mean and dispersion for sires with a different number of daughter observations were 0.907. In the studied population, the genetic trend in the mean of DFS was significant and favourable (–0.063 days/year), but the genetic trend in the dispersion of DFS was not significantly different from zero. The results obtained in the present study indicated that the mean and uniformity of DFS can simultaneously be improved in dairy cows.


2002 ◽  
Vol 75 (1) ◽  
pp. 15-24 ◽  
Author(s):  
T. H. E. Meuwissen ◽  
R. F. Veerkamp ◽  
B. Engel ◽  
S. Brotherstone

AbstractSurvival data were simulated under the Weibull model in a half-sib family design, and about 50% of the records were censored. The data were analysed using the proportional hazard model (PHM) and, after transformation to survival scores, using a linear and a binary (logit) model (LIN and BIN, respectively), where the survival scores are indicators of survival during time period t given survival up to period t – 1. Correlations between estimated and true breeding values of sires (accuracies of selection) were very similar for all three models (differences were smaller than 0·3%). Daughter effects were however less accurately predicted by the LIN model, i.e.taking proper account of the distribution of the survival data yields more accurate predictions of daughter effects. The estimated variance components and regressions of true on estimated breeding values were difficult to compare for the LIN models, because estimated breeding values were expressed as additive effects on survival scores while the simulated true breeding values were expressed on the underlying scale. Also the differences in accuracy of selection between sire and animal model breeding value estimates were small, probably due to the half-sib family design of the data. To estimate breeding values for functional survival, i.e. the component of survival that is genetically independent of production (here milk yield), two methods were compared: (i) breeding values were predicted by a single-trait linear model with a phenotypic regression on milk yield; and (ii) breeding values were predicted by a two-trait linear model for survival and milk yield, and breeding values for survival corrected for milk yield were obtained by a genetic regression on the milk yield breeding value estimates. Both methods yielded very similar accuracies of selection for functional survival, and are expected to be equivalent.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Evert W. Brascamp ◽  
Piter Bijma

Abstract Background In honey bees, observations are usually made on colonies. The phenotype of a colony is affected by the average breeding value for the worker effect of the thousands of workers in the colony (the worker group) and by the breeding value for the queen effect of the queen of the colony. Because the worker group consists of multiple individuals, interpretation of the variance components and heritabilities of phenotypes observed on the colony and of the accuracy of selection is not straightforward. The additive genetic variance among worker groups depends on the additive genetic relationship between the drone-producing queens (DPQ) that produce the drones that mate with the queen. Results Here, we clarify how the relatedness between DPQ affects phenotypic variance, heritability and accuracy of the estimated breeding values of replacement queens. Second, we use simulation to investigate the effect of assumptions about the relatedness between DPQ in the base population on estimates of genetic parameters. Relatedness between DPQ in the base generation may differ considerably between populations because of their history. Conclusions Our results show that estimates of (co)variance components and derived genetic parameters were seriously biased (25% too high or too low) when assumptions on the relationship between DPQ in the statistical analysis did not agree with reality.


1993 ◽  
Vol 57 (2) ◽  
pp. 175-182 ◽  
Author(s):  
P. Uimari ◽  
E. A. Mäntysaari

AbstractAn animal model and an approximative method for calculating repeatabilities of estimated breeding values are used in Finnish dairy cow evaluation. Changes in estimated breeding values over time as daughters accumulate were studied. Special emphasis was given to the accuracy and potential bias in the pedigree indices of young sires. The data set used was the same as in the national evaluation and the traits investigated were protein yield and somatic cell count. The average repeatability in evaluation of bulls without daughters was 0·37. The empirical repeatability defined as a squared correlation between the pedigree index and the final sire proof was only 0·15. The reduction in the repeatability was attributed to the selection on pedigree index. The upward bias observed in pedigree indices was 5 kg (approx. 0·3 of genetic standard deviation). The bias was caused by the overestimation of bull dams' breeding value. Also the proofs of bull sires increased after the second crop of daughters. The correlation between the evaluations of the same sire calculated from two separate equal size daughter groups was 0·91 when the bull had 10 to 50 daughters and 0·87 with over 100 daughters. This illustrates how the relative weight of the pedigree decreases while more progeny information is accumulated in the evaluation.


2020 ◽  
Vol 50 (4) ◽  
pp. 613-625
Author(s):  
A. Ali ◽  
K. Javed ◽  
I. Zahoor ◽  
K.M. Anjum

Data on 2931 Kajli lambs, born from 2007 to 2018, were used to quantify environmental and genetic effects on growth performance of Kajli sheep. Traits considered for evaluation were birth weight (BWT), 120-day adjusted weight (120DWT), 180-day adjusted weight (180DWT), 270-day adjusted weight (270DWT), and 365-day adjusted weight (365DWT). Fixed effects of year of birth, season of birth, sex, birth type, and dam age on these traits were evaluated using linear procedures of SAS, 9.1. Similarly, BWT, 120DWT, 180DWT, and 270DWT were used as fixed effects mixed model analyses. Variance components, heritability and breeding values were estimated by restricted maximum likelihood. The genetic trend for each trait was obtained by regression of the estimated breeding values (EBV) on year of birth. Analyses revealed substantial influence of birth year on all traits. Sex and birth type were the significant sources of variation for BWT and 120DWT. Season of birth did not influence birth weight meaningfully, but had a significant role in the expression of 120DWT, 180DWT, and 270DWT. Heritability estimates were generally low (0.003 ± 0.018 to 0.099 ± 0.067) for all traits. With the exception of the genetic correlation of 180DWT and 365DWT, the genetic correlations between trait were strong and positive. Only 365DWT had a positive genetic trend. Although the heritability estimates for almost all weight traits were low, high and positive genetic correlations between BWT and other weight traits suggest that selection based on BWT would result in the improvement of other weight traits as a correlated response.Keywords: bodyweight, breeding value, genetic correlation, sheep


2015 ◽  
Vol 15 (4) ◽  
pp. 879-887
Author(s):  
Tomasz Próchniak ◽  
Iwona Rozempolska-Rucińska ◽  
Grzegorz Zięba ◽  
Marek Łukaszewicz

Abstract Genetic improvement of show jumping horses is problematic, given the multitude of physical traits that determine sport usability and the specific mental predispositions required during training and competitions. The Polish Championships for Young Horses (PCYH) provide an opportunity to evaluate usability traits in Polish horses, which, however, is not a basis for evaluation of the breeding value. The aim of the study was to propose a model for evaluation of the breeding value of horses taking part in the Championships. In total, 1232 starts of 894 4-, 5-, 6-, and 7-year-old horses were analysed. Indices of BLUP breeding values were calculated based on 7 traits with known genetic parameters (ranking in the championship, style rating on days 1, 2, and 3, and penalty points on days 1, 2, and 3). A low and irregular genetic trend, significant only in the case of penalties scored on days 1 and 2 of the championships, was shown. Compatibility of the evaluation of the breeding value estimated on the basis of scores achieved in the Polish Championships for Young Horses with the scores of the performance test carried out in Training Centres was shown. It was also demonstrated that the “sum penalty” and “sum style” measured during the three days of the Championships is sufficient for evaluation of the BLUP breeding value. It was suggested that the evaluation combined with the results achieved at the PCYH (in four age categories) would provide a more detailed picture of the genetic predispositions of jumping horses.


2020 ◽  
Vol 44 (5) ◽  
pp. 994-1002
Author(s):  
Samet Hasan ABACI ◽  
Hasan ÖNDER

This study aims to compare the accuracy of pedigree-based and genomic-based breeding value prediction for different training population sizes. In this study, Bayes (A, B, C, Cpi) and GBLUP methods for genomic selection and BLUP method for pedigree-based selection were used. Genomic and pedigree-based breeding values were estimated for partial milk yield (158 days) of Holstein cows (400 individuals) from a private enterprise in the USA. For this aim, populations were created for indirect breeding value estimates as training (322–360) and test (78–40) populations. In animals genotyped with a 54k SNP, the marker file was encoded as –10, 0, and 10 for AA, AB, and BB marker genotypes, respectively. Bayes and GBLUP methods were performed using GenSel 4.55 software. A total of 50,000 iterations were used, with the first 5000 excluded as the burn-in. Pedigree-based breeding values were estimated by REML using MTDFREML software employing an animal model. Correlations between partial milk yield and estimated breeding values were used to assess the predictive ability for methods. Bayes B method gave the highest accuracy for the indirect estimate of breeding value.


2010 ◽  
Vol 53 (1) ◽  
pp. 26-36 ◽  
Author(s):  
S. Bene ◽  
I. Füller ◽  
A. Fördős ◽  
F. Szabó

Abstract. Weaning weight, preweaning daily gain and 205-day weight of Hungarian Fleckvieh calves (n=8 929, bulls =4 539, heifers =4 390) born from 232 sires between 1980 and 2003 were examined. Variance, covariance components and heritability values and correlation coefficients were estimated. The effect of the maternal permanent environment on genetic parameters and breeding values were examined. Two animal models were used for breeding value estimation. The direct heritability (hd2) of weaning weight, preweaning daily gain and 205-day weight was between 0.37 and 0.42. The maternal heritability (hm2) of these traits was 0.06 and 0.07. The direct-maternal correlations (rdm) were medium and negative −0.52 and −0.74. Contribution of the maternal heritability and maternal permanent environment to phenotype is smaller than that of direct heritabilities (hm2+c2< hd2). The ratio of the variance of maternal permanent environment in the phenotypic variance (c2) changed from 3 to 6 %. Estimated breeding values changed whether the permanent environmental effect of dam wasn’t taken into consideration but the rank of the animals was not modified. The genetic value for weaning results of Hungarian Fleckvieh population has increased since 1997.


Sign in / Sign up

Export Citation Format

Share Document