scholarly journals Mechanical resistance of restored teeth with extensive crown damage

2009 ◽  
Vol 56 (2) ◽  
pp. 72-77
Author(s):  
Ivan Sarcev ◽  
Branislava Petronijevic ◽  
Dubravka Markovic ◽  
Srecko Selakovic

Introduction. Extensively damaged teeth can be restored by different core build-up materials. The aim of this study was to examine the mechanical properties of the restored maxillary premolars with composite resin, dental amalgam and glass ionomer cement (GIC) using compressive strength test. Materials and methods. Forty extracted intact human maxillary premolars were used in this study. Artificial defect in dentin was prepared using diamond bur up to the half of the anatomic crown of the tooth. After core build-up procedure, each tooth specimen was mounted in auto polymerizing acrylic resin blocks 2 mm below cement enamel junction and they were kept in distilled water at 37?C one day before testing. Then, they were placed in specially adapted devices at the angle of 183? to the longitudinal axis and subjected to a controlled load of 1 mm per minute. Results. Results showed that the best mechanical properties had samples restored with resin composite (492.5 N), then with amalgam (341.2 N) and glass ionomer cement (171.8 N). Comparing the fracture force using ANOVA, there was statistic significance between these groups (p<0.01). There were significant differences among control group and restored teeth with composite resin, amalgam and GIC. There was no significant difference in values of fracture forces between groups with composite resin and amalgam. The fracture force corresponding to the teeth restored with the GICs was significantly lower compared to the control group and the group with composite resin and amalgam. Conclusion. Satisfactory mechanical properties of restored premolars were obtained using composite resin and dental amalgam as a core build-up material.

2010 ◽  
Vol 35 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Sajad Sainulabdeen ◽  
Prasanna Neelakantan ◽  
Sindhu Ramesh ◽  
CV Subbarao

Objectives: The aim of this pilot study was to evaluate the antibacterial activity of glass ionomer cement impregnated with different concentrations (0.5%, 1.25% and 2.5%) of a non releasing bactericide –Triclosan (TC) against two common cariogenic bacteria – Lactobacillus acidophilus and Streptococcus mutans; and to compare Triclosan incorporated GIC with chlorhexidine (CHX) incorporated GIC (2.5%)in terms of antibacterial activity. Methods: Chlorhexidine or Triclosan were added to glass ionomer cement powder to achieve 2.5% CHX – GIC (positive control – Group II), 0.5%, 1.25% and 2.5% TC-GIC (experimental groups III, IV and V respectively) formulations. Restorative glass ionomer cement (Fuji IX GC –Group I) served as negative control. The powder and liquid were mixed and inserted into the wells punched in agar plates (10mm × 4mm). The agar diffusion method was used to determine the antibacterial activity of the cements after 1, 7 and 30 days. Mean values were compared between different study groups using One-way ANOVA and Tukey's HSD procedure at a significance level of 5%. Results: Triclosan incorporated GIC was more effective against L.acidophilus and S.mutans than Chlorhexidine incorporated GIC. Triclosan at a concentration of 2.5% was more effective than at lower concentrations. At all time periods studied, the maximum zone of inhibition against L.acidophilus was produced by Group V. Against S.mutans, on days 1,7 and 30, there was no significant difference between Groups II and IV (p&gt;0.05), while the other groups showed significant differences. Conclusion: The use of triclosan as an antibacterial additive in GIC holds promise and further clinical research is needed in this direction.


2021 ◽  
Vol 10 (7) ◽  
pp. e5110716150
Author(s):  
Walber Maeda ◽  
Wayne Martins Nascimento ◽  
Marcelo Santos Coelho ◽  
Danilo de Luca Campos ◽  
João Paulo Drumond ◽  
...  

Aim: In this study was evaluated the fracture resistance of endodontically treated maxillary premolars restored with      different restorative materials. Methods: Sixty maxillary premolars were submitted to the same mesio-occlusal-distal cavity preparation, endodontic treatment and divided into 5 groups (n = 10): Coltosol Group – GCO restored with calcium silicate material; Glass Ionomer Cement Group – GGIC, restored with Maxxion R; Modified Glass Ionomer Cement – GMGIC, restored with Gold Label 2; Composite Group - GC, restored with Z100, and the positive control group (GP) - left unrestored. One group remained intact (n=10) serving as negative control (GN). Samples were subjected to fracture resistance testing by the universal testing machine until fracture occurred and was registered in newtons (N). Fracture pattern was assessed and described as favorable or unfavorable. The results were statistically analyzed by 1-way analysis of variance and the post hoc Tukey test with significant statistical difference at P < 0.05.  Results: Higher fracture resistance results were found for GC (1,128.35 ± 249.17), GMGIC (1,250.77 ± 173.29), and GN (1,277.22 ± 433.44) (P < .05). More favorable fractures were observed in the GCO (6), GC (7), and GN (7) (P < .05). Conclusion: Teeth restored with composite and modified GIC presented the same resistance as intact teeth. Teeth restored with Coltosol and GGIC presented similar resistance to unrestored teeth.


2019 ◽  
pp. 59-63 ◽  
Author(s):  
I.V. Yanishen ◽  
O.V. Sidorova

Fixation of indirect constructions restoration with permanent cement is the final clinical stage of orthopedic treatment. It should be noted that the result of the treatment with the using of unremovable dentures essentially depends on the correct choice of cement for fixation. The comparative analysis conducted to improve the quality of fixing method of unremovable dentures was carried out on the base of the Research laboratory of dental materials and products of JSC «STOMA», Ukraine. We used the following materials: glassionomer cements “KetakCem”, Germany; “Riva”, Australia.  The study of physico-mechanical properties of materials was carried out according to the following parameters: determination of the strength of the diametrical stretching (T, MPa), bending strength (σ, MPa), determination of the water absorption index (W, μg / mm³), free linear shrinkage (L,%), solubility index (D,%), and compressive strength (C, MPa). At the determination of the strength the diametrical stretching index (T, MPa) according to the results of laboratory tests "Ketac Cem", "Riva" and the new glass ionomer cement developed by us for permanent fixing of unremovable dentures.We have received that the indices of all selected cements are within 8.8 - 9.9 MPa which are close to international standards ISO 4104. Also we found out that the boundary value at the diametral stretched "Riva", which is (8.9 ± 0.3) MPa, is not greater than Ketac Cem (9.9 ± 0.6) and is reliably non-existent significant differences (p> 0.05). The glass ionomer cement developed by us with an index of 8.8 ± 0.5% (T, MPa) with a certainty (p> 0.05) has no difference between the indicators of «Ketac Cem» and «Riva» materials. Consequently, the strength limit at the diametrical extension of a new glass ionomer cement for permanent fixation has no significant difference compared with its foreign analogues (p> 0,05). The strength of the curtain (σ, MPa) of the materials under investigation for fixing unremovable dentures varies within (55.9 ± 70.2). It was found out that the durability of a new glass ionomer dental cement is (58.3 ± 0.4%). It is significantly lower (p <0,001) than the ‘Ketac Cem’ material - 70,2 ± 0,7%, while the "Riva" (55,9 ± 0,8%) has the least value. We indicate that the strength of the material @Riva "is significantly lower (p <0.001). In determining the rate water absorption, we obtained the following results: the glass ionomer cement developed by us has the limits of water absorption which is 42.7 ± 0.4 μg / mm3 compared with the analogues Ketac Cem and Riva - 36.3 ± 0.6 and 39 , 7 ± 0.3 μg / mm 3, respectively. The data of statistical processing showed that the water absorption of glass ionomeric cements is significantly lower (p <0,001). Free linear shrinkage of new glass ionomer cement has limits of 0,44 ± 0,03%, which exceeds the value of "Ketac Cem" (0,33 ± 0,02) by 0,11±0,01%, and is significant (p <0, 05) is less in comparison with "Riva", the index of which is 0,66±0,09%. The solubility index of the cement we developed is 1.30 ± 0.16%, which is 0.07 ± 0.03% higher than Ketac Cem - 1.23 ± 0.17%, but not significantly different from the material "Riva ", which index is 1.32±0.14%, which corresponds to ISO, but these data do not have statistically significant differences (p> 0.05). The results of the compression strength index are characterized not by a significant difference between them: the cement developed is 76.2 ± 0.4% MPa, which is significantly (p <0.001) 2.4 ± 0.1% less than Ketac Cem - 78.6 ± 0,5%, but does not have a significant difference (p> 0,05) between the developed material and the «Riva» index which is 76,0 ± 0,8%, respectively.


2013 ◽  
Vol 84 (2) ◽  
pp. 368-373 ◽  
Author(s):  
Erdem Hatunoğlu ◽  
Fırat Öztürk ◽  
Tuğça Bilenler ◽  
Sertaç Aksakallı ◽  
Neslihan Şimşek

ABSTRACTObjective:To investigate whether adding ethanolic extracts of propolis (EEP) might influence the antibacterial and mechanical (shear-peel band strength [SPBS]) properties of conventional glass ionomer cement (GIC) used in orthodontic band cementation.Materials and Methods:The cement was divided into four groups: one using the original composition and three with 10%, 25%, and 50% EEP added to the liquid and then manipulated. An antimicrobial assay, broth-dilution method was used to determine the antibacterial capacity of the GIC containing EEP. Eighty teeth were used for the mechanical assay, and an Instron testing machine was used to evaluate the SPBS. Kolmogorov-Smirnov and Kruskal-Wallis tests were used for statistical analyses.Results:GIC with the addition of 25% and 50% EEP activated inhibition of Streptococcus mutans (ATCC 25175) growth, but this effect did not occur in the group to which 10% EEP was added or in the control GIC group. There was no significant difference between the groups in terms of SPBS (P &gt; .05).Conclusions:The addition of EEP may increase antibacterial properties without negatively modifying the mechanical properties of conventional GIC.


Author(s):  
Pocut Aya Sofya ◽  
Liana Rahmayani ◽  
Apriliadi Saputra

Glass ionomer cement (GIC) is a restorative material that can release flour so as to prevent further caries, biocompatible, translucent, and anti-bacterial, low tensile strength, GIC has limitations that is short working time and cannot be used in areas of teeth that have large masticatory pressure, susceptible to fracture toughness. The addition of silica in GIC is one aspect that needs to be considered because silica has high hardness properties. The source of silica can be synthesized from sea sand which has a silica content of about 98%. This study aims to determine the difference in surface hardness from conventional GIC and GIC by the addition of 5% silica from sea sand. Cylinder-shaped specimens with a diameter of 5 mm and height of 2 mm, totaling 10 specimens, namely 5 conventional type II GIC specimens (control group) and 5 conventional GIC specimens with the addition of silica from sea sand (treatment group). Vickers Hardness Tester is used to measure the value of hardness. Data were analyzed using SPSS with unpaired t test. The results of the data show that there was no significant difference (p> 0.05) between the surface hardness of conventional GIC and GIC with the addition of silica from sea sand.


Author(s):  
Nagalakshmi Chowdhary ◽  
N. K. Kiran ◽  
A. Lakshmi Priya ◽  
Rajashekar Reddy ◽  
Arvind Sridhara ◽  
...  

2020 ◽  
pp. 38-45
Author(s):  
Duong Nguyen Thi Thuy ◽  
Huong Nguyen Thi Kim

Background: Composite and Glass ionomer cement (GIC) are common restorative materials of non carious cervical lesions (NCCLs), which effects are controverisial. The aim of the present study was to compare the result of restorations on NCCLs between Composite and GIC. Materials and Methods: follow-up clinical trial with split-mouth design. Thirty-six patients with 96 NCCLs were divided into 2 groups (n=48/group): Group 1 restored by Composite, Group 2 restored by GIC. The restorations were evaluated at baseline, 1 and 3 months for pulpal sensitivity, restoration morphology and overall success grade. Results: GIC restorations gained 100% Good results for all parameters at 3 time points. Composite showed 87.5%, 93.8% and 97.9% Good results at baseline, 1 and 3 months, sequentially. At 3 weeks recall, 1 Composite restorations (2.1%) showed Moderate results of Retention and 2 Composite restorations (4.2%) changed colour. Conclusions: There was no statistically significant difference seen among the three groups for 3 parameters. Key words: non-carious cervical lesion, Composite, Glass ionomer cement


2001 ◽  
Vol 15 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Maria Fernanda Borro BIJELLA ◽  
Maria Francisca Thereza Borro BIJELLA ◽  
Salete Moura Bonifácio da SILVA

This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey’s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.


2018 ◽  
Vol 37 (6) ◽  
pp. 874-879 ◽  
Author(s):  
Marianne LAGARDE ◽  
Philippe FRANCOIS ◽  
Stéphane LE GOFF ◽  
Jean-Pierre ATTAL ◽  
Elisabeth DURSUN

Sign in / Sign up

Export Citation Format

Share Document