scholarly journals COMPARATIVE EVALUATION OF PHYSICO-MECHANICAL PROPERTIES OF DENTAL CEMENTS FOR PERMANENT FIXATION OF ORTHOPEDIC CONSTRUCTIONS

2019 ◽  
pp. 59-63 ◽  
Author(s):  
I.V. Yanishen ◽  
O.V. Sidorova

Fixation of indirect constructions restoration with permanent cement is the final clinical stage of orthopedic treatment. It should be noted that the result of the treatment with the using of unremovable dentures essentially depends on the correct choice of cement for fixation. The comparative analysis conducted to improve the quality of fixing method of unremovable dentures was carried out on the base of the Research laboratory of dental materials and products of JSC «STOMA», Ukraine. We used the following materials: glassionomer cements “KetakCem”, Germany; “Riva”, Australia.  The study of physico-mechanical properties of materials was carried out according to the following parameters: determination of the strength of the diametrical stretching (T, MPa), bending strength (σ, MPa), determination of the water absorption index (W, μg / mm³), free linear shrinkage (L,%), solubility index (D,%), and compressive strength (C, MPa). At the determination of the strength the diametrical stretching index (T, MPa) according to the results of laboratory tests "Ketac Cem", "Riva" and the new glass ionomer cement developed by us for permanent fixing of unremovable dentures.We have received that the indices of all selected cements are within 8.8 - 9.9 MPa which are close to international standards ISO 4104. Also we found out that the boundary value at the diametral stretched "Riva", which is (8.9 ± 0.3) MPa, is not greater than Ketac Cem (9.9 ± 0.6) and is reliably non-existent significant differences (p> 0.05). The glass ionomer cement developed by us with an index of 8.8 ± 0.5% (T, MPa) with a certainty (p> 0.05) has no difference between the indicators of «Ketac Cem» and «Riva» materials. Consequently, the strength limit at the diametrical extension of a new glass ionomer cement for permanent fixation has no significant difference compared with its foreign analogues (p> 0,05). The strength of the curtain (σ, MPa) of the materials under investigation for fixing unremovable dentures varies within (55.9 ± 70.2). It was found out that the durability of a new glass ionomer dental cement is (58.3 ± 0.4%). It is significantly lower (p <0,001) than the ‘Ketac Cem’ material - 70,2 ± 0,7%, while the "Riva" (55,9 ± 0,8%) has the least value. We indicate that the strength of the material @Riva "is significantly lower (p <0.001). In determining the rate water absorption, we obtained the following results: the glass ionomer cement developed by us has the limits of water absorption which is 42.7 ± 0.4 μg / mm3 compared with the analogues Ketac Cem and Riva - 36.3 ± 0.6 and 39 , 7 ± 0.3 μg / mm 3, respectively. The data of statistical processing showed that the water absorption of glass ionomeric cements is significantly lower (p <0,001). Free linear shrinkage of new glass ionomer cement has limits of 0,44 ± 0,03%, which exceeds the value of "Ketac Cem" (0,33 ± 0,02) by 0,11±0,01%, and is significant (p <0, 05) is less in comparison with "Riva", the index of which is 0,66±0,09%. The solubility index of the cement we developed is 1.30 ± 0.16%, which is 0.07 ± 0.03% higher than Ketac Cem - 1.23 ± 0.17%, but not significantly different from the material "Riva ", which index is 1.32±0.14%, which corresponds to ISO, but these data do not have statistically significant differences (p> 0.05). The results of the compression strength index are characterized not by a significant difference between them: the cement developed is 76.2 ± 0.4% MPa, which is significantly (p <0.001) 2.4 ± 0.1% less than Ketac Cem - 78.6 ± 0,5%, but does not have a significant difference (p> 0,05) between the developed material and the «Riva» index which is 76,0 ± 0,8%, respectively.

2009 ◽  
Vol 56 (2) ◽  
pp. 72-77
Author(s):  
Ivan Sarcev ◽  
Branislava Petronijevic ◽  
Dubravka Markovic ◽  
Srecko Selakovic

Introduction. Extensively damaged teeth can be restored by different core build-up materials. The aim of this study was to examine the mechanical properties of the restored maxillary premolars with composite resin, dental amalgam and glass ionomer cement (GIC) using compressive strength test. Materials and methods. Forty extracted intact human maxillary premolars were used in this study. Artificial defect in dentin was prepared using diamond bur up to the half of the anatomic crown of the tooth. After core build-up procedure, each tooth specimen was mounted in auto polymerizing acrylic resin blocks 2 mm below cement enamel junction and they were kept in distilled water at 37?C one day before testing. Then, they were placed in specially adapted devices at the angle of 183? to the longitudinal axis and subjected to a controlled load of 1 mm per minute. Results. Results showed that the best mechanical properties had samples restored with resin composite (492.5 N), then with amalgam (341.2 N) and glass ionomer cement (171.8 N). Comparing the fracture force using ANOVA, there was statistic significance between these groups (p<0.01). There were significant differences among control group and restored teeth with composite resin, amalgam and GIC. There was no significant difference in values of fracture forces between groups with composite resin and amalgam. The fracture force corresponding to the teeth restored with the GICs was significantly lower compared to the control group and the group with composite resin and amalgam. Conclusion. Satisfactory mechanical properties of restored premolars were obtained using composite resin and dental amalgam as a core build-up material.


2018 ◽  
Vol 16 (1) ◽  
pp. 106-118
Author(s):  
Emma Krisyudhanti

BACKGROUND: Pit and fissure sealants are materials that are often used for preventive maintenance, especially on occlusal surfaces of teeth that are susceptible to caries. All restoration materials that come into contact with water will experience 2 mechanisms, namely the absorption of water, which causes matrix swelling and increased mass and water solubility, namely the release of components from unreacted monomers and causing reduced mass. OBJECTIVE: Measure the value of water absorption and solubility of glass ionomer cement as a cover of the pit and fissure of the tooth. METHODS: 18 specimens of glass ionomer cement sealant material manipulated according to the manufacturer's instructions consisted of six specimens measuring 15 mm in diameter and 1 mm in thickness made for each immersion time. The specimen was put into a desiccator at 37°C for 22 hours and then put into another desiccator with a temperature of 23°C for 2 hours. The specimen was weighed with a precision scale of 0.1 mg. Measurements are carried out repeatedly until a constant mass is obtained (M1). Next, the specimen was put into 40 ml of aquabides and stored in a desiccator at 37°C for 1 day, 2 days and 7 days. At the end of each immersion time, the specimen was removed from aquabides, dried with suction paper and vibrated in the air for 15 seconds. Specimens are weighed to get M2. The specimens were reconditioned to the desiccator at 37°C for 22 hours and then put into another desiccator with a temperature of 23°C for 2 hours and this procedure was repeated one day later, then the mass was weighed repeatedly until a constant mass was obtained (M3). RESEARCH RESULTS: The Kruskal-Wallis statistical test shows that there is no significant difference in the average water absorption value and solubility of materials for immersion for 1 day, 2 days and 7 days. CONCLUSIONS AND RECOMMENDATIONS: The absorption rate of glass ionomer cement as a cover of dental pit & fissure decreased until the second day and increased until the seventh day, with an average absorption of water for 1 day immersion of 42.68mg/mm³, 2 days 40, 53mg/mm³ and 7 days 42.99mg/mm³. Solubility value in water of glass ionomer cement as a cover of dental pit & fissure decreased until the second day then increased until the seventh day, with an average solubility of material for immersion for 1 day at 41.46mg/mm³, 2 days 39.39mg/mm³ and 7 days 41,91mg/mm³. It was said that there was no significant difference in the value of water absorption and solubility of materials during the immersion period of 1, 2 and 7 days. It is recommended that in the application of glass ionomer cement as a cover of dental pits and fissures, please note in the provision of varnish or protector to reduce the occurrence of water absorption and solubility of the material. In addition, the pit and fissure of the tooth that has been covered should be controlled 3 months later to find out if the cover is still intact or has been damaged or loose. It is also recommended that there is further research to determine the value of water absorption and solubility of ingredients if soaked in artificial saliva for more than 7 days.


2013 ◽  
Vol 84 (2) ◽  
pp. 368-373 ◽  
Author(s):  
Erdem Hatunoğlu ◽  
Fırat Öztürk ◽  
Tuğça Bilenler ◽  
Sertaç Aksakallı ◽  
Neslihan Şimşek

ABSTRACTObjective:To investigate whether adding ethanolic extracts of propolis (EEP) might influence the antibacterial and mechanical (shear-peel band strength [SPBS]) properties of conventional glass ionomer cement (GIC) used in orthodontic band cementation.Materials and Methods:The cement was divided into four groups: one using the original composition and three with 10%, 25%, and 50% EEP added to the liquid and then manipulated. An antimicrobial assay, broth-dilution method was used to determine the antibacterial capacity of the GIC containing EEP. Eighty teeth were used for the mechanical assay, and an Instron testing machine was used to evaluate the SPBS. Kolmogorov-Smirnov and Kruskal-Wallis tests were used for statistical analyses.Results:GIC with the addition of 25% and 50% EEP activated inhibition of Streptococcus mutans (ATCC 25175) growth, but this effect did not occur in the group to which 10% EEP was added or in the control GIC group. There was no significant difference between the groups in terms of SPBS (P &gt; .05).Conclusions:The addition of EEP may increase antibacterial properties without negatively modifying the mechanical properties of conventional GIC.


Author(s):  
Nagalakshmi Chowdhary ◽  
N. K. Kiran ◽  
A. Lakshmi Priya ◽  
Rajashekar Reddy ◽  
Arvind Sridhara ◽  
...  

2020 ◽  
pp. 38-45
Author(s):  
Duong Nguyen Thi Thuy ◽  
Huong Nguyen Thi Kim

Background: Composite and Glass ionomer cement (GIC) are common restorative materials of non carious cervical lesions (NCCLs), which effects are controverisial. The aim of the present study was to compare the result of restorations on NCCLs between Composite and GIC. Materials and Methods: follow-up clinical trial with split-mouth design. Thirty-six patients with 96 NCCLs were divided into 2 groups (n=48/group): Group 1 restored by Composite, Group 2 restored by GIC. The restorations were evaluated at baseline, 1 and 3 months for pulpal sensitivity, restoration morphology and overall success grade. Results: GIC restorations gained 100% Good results for all parameters at 3 time points. Composite showed 87.5%, 93.8% and 97.9% Good results at baseline, 1 and 3 months, sequentially. At 3 weeks recall, 1 Composite restorations (2.1%) showed Moderate results of Retention and 2 Composite restorations (4.2%) changed colour. Conclusions: There was no statistically significant difference seen among the three groups for 3 parameters. Key words: non-carious cervical lesion, Composite, Glass ionomer cement


2001 ◽  
Vol 15 (4) ◽  
pp. 277-282 ◽  
Author(s):  
Maria Fernanda Borro BIJELLA ◽  
Maria Francisca Thereza Borro BIJELLA ◽  
Salete Moura Bonifácio da SILVA

This study evaluated, in vitro, marginal microleakage in class II restorations confected with the glass ionomer cement Vitremer and with the composite resins Ariston pHc and P-60. The aims of the study were to assess the effect of thermocycling on those materials and to evaluate two methods utilized in the analysis of dye penetration. Sixty premolars divided in three groups were utilized; the teeth had proximal cavities whose cervical walls were located 1 mm below the cementoenamel junction. Half of the test specimens from each group underwent thermocycling; the other half remained in deionized water, at 37ºC. The specimens were immersed, for 24 hours, in a basic 0.5% fuchsin solution at 37ºC. For the analysis of microleakage, the specimens were sectioned in a mesio-distal direction, and the observation was carried out with the software Imagetools. The results were evaluated through the 2-way ANOVA and through the Tukey’s test. All groups presented marginal microleakage. The smallest values were obtained with Vitremer, followed by those obtained with the composite resins P-60 and Ariston pHc. There was no statistically significant difference caused by thermocycling, and the method of maximum infiltration was the best for detecting the extension of microleakage.


2018 ◽  
Vol 37 (6) ◽  
pp. 874-879 ◽  
Author(s):  
Marianne LAGARDE ◽  
Philippe FRANCOIS ◽  
Stéphane LE GOFF ◽  
Jean-Pierre ATTAL ◽  
Elisabeth DURSUN

2010 ◽  
Vol 29 (3) ◽  
pp. 253-261 ◽  
Author(s):  
Lihua E ◽  
Masao IRIE ◽  
Noriyuki NAGAOKA ◽  
Takashi YAMASHIRO ◽  
Kazuomi SUZUKI

2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Radwa Hamdy Aboelenen ◽  
Ashraf Mokhtar ◽  
Hanaa Zaghloul

Objective: To evaluate the marginal fit and microleakage of monolithic zirconia crowns cemented with bioactive cement (Ceramir) compared to that cemented with glass ionomer cement and to evaluate the effect of thermocycling on marginal fit. Materials and methods: Twenty sound human molar teeth were prepared to receive a monolithic zirconia crowns. Teeth were divided randomly into two equal groups according to the type of luting cement. Group I: glass ionomer cement and group II: Ceramir cement. After cementation, the vertical marginal gap was assessed by using stereomicroscope before and after thermocycling. Twenty equidistant measurement points were taken for each crown. Leakage assessment was carried out using Fuchsin dye penetration followed by digital photography under a stereomicroscope. Data were analyzed by Mann-Whitney U test to compare between the two luting cements. Wilcoxon signed-rank test was used to evaluate the effect of thermocycling on the marginal fit (P ≤ 0.05)
Results: Whether before or after thermocycling, the results showed no significant difference between the marginal gap values of the two tested groups. For both groups, there was a significant increase in marginal gap values after thermocycling. Also, there was no significant difference between leakage scores of the two tested groups. Conclusions: Similarity in the physical properties and chemical composition of the two cements result in a non- significant effect on the vertical marginal fit and the extent of microleakage of translucent zirconia crowns.  Thermocycling had a negative impact on the vertical marginal gap of the two tested luting agents.


Sign in / Sign up

Export Citation Format

Share Document