scholarly journals Demographic determinants of energy consumption in the European Union: Econometric analysis results

Stanovnistvo ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Predrag Petrovic ◽  
Goran Nikolic ◽  
Ivana Ostojic

Over the past several decades there has been a strong intensifying trend of human society impact on ecosystems, consumption of natural resources and global change. The environmental impact of the society is fully apparent and dominantly implemented through various greenhouse gases emissions (GHG), leading towards global climate change with considerably spread harmful effects. Global climate change includes the earth and ocean surface and atmospheric warming, but also melting of snow and ice, increase of sea levels and ocean acidity, as well as ever more common natural phenomena extremes (winds, various forms of rainfall/precipitation, extremely low or high temperatures, etc.). Scientists are well-familiarized with the fact that use of fossil fuels, such as oil derivatives and coal, is the main generator of harmful gases. In addition, possible substitutions for fossil fuels in the form of other energy sources are very limited, and it should be remembered that other energy sources also have certain adverse environmental effects. Bearing in mind climate change caused by products of fossil fuels combustion, as well as inevitable depletion of natural crude oil resources, management of growing global energy demand becomes one of the key goals and challenges of 21st century. If these reasons are coupled with obligations emanating from Kyoto Protocol, it is clear that attention of researches should be more than reasonably focused on the main determinants of energy consumption. This study is focused on illumination of key demographic and economic determinants of energy consumption in 28 EU member states in the period 1960- 2014. The results obtained demonstrate that population positively and quite strongly influence total energy consumption. An increase of population of 1% will result in an increase of energy consumption of 1.59% to 1.76%. Such relation most probably can be explained by the fact that demographic growth of the society aggravates and complicates planning processes of efficient energy consumption, diminishing the ability of society to be energy efficient. The population effect of persons aged 65 and above to energy consumption is also positive. An increase in share of this age group of 1% will result in an increase in energy consumption of approximately 0.43%. Positive elasticity coefficient should be understood as a proof that European societies with higher share of senior citizens consume more energy that societies with higher share of younger population, not necessarily as an argument that senior citizens use more energy than younger population. The explanation for such nature of a cause-andeffect relation could be that high share of senior citizens influences the structure of production and consumption, spatial distribution of population, transport infrastructure and social services provided. A significant influence on energy consumption in the EU is made by the level of economic development of countries, which is in accordance with the Environmental Kuznets Curve (EKC), suggesting a relation of inverted letter ?U?. The amount of income per capita needed to have the EKC expressed ranges between 54,183 and 81,552 dollars.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4839 ◽  
Author(s):  
Coilín ÓhAiseadha ◽  
Gerré Quinn ◽  
Ronan Connolly ◽  
Michael Connolly ◽  
Willie Soon

Concern for climate change is one of the drivers of new, transitional energy policies oriented towards economic growth and energy security, along with reduced greenhouse gas (GHG) emissions and preservation of biodiversity. Since 2010, the Climate Policy Initiative (CPI) has been publishing annual Global Landscape of Climate Finance reports. According to these reports, US$3660 billion has been spent on global climate change projects over the period 2011–2018. Fifty-five percent of this expenditure has gone to wind and solar energy. According to world energy reports, the contribution of wind and solar to world energy consumption has increased from 0.5% to 3% over this period. Meanwhile, coal, oil, and gas continue to supply 85% of the world’s energy consumption, with hydroelectricity and nuclear providing most of the remainder. With this in mind, we consider the potential engineering challenges and environmental and socioeconomic impacts of the main energy sources (old and new). We find that the literature raises many concerns about the engineering feasibility as well as environmental impacts of wind and solar. However, none of the current or proposed energy sources is a “panacea”. Rather, each technology has pros and cons, and policy-makers should be aware of the cons as well as the pros when making energy policy decisions. We urge policy-makers to identify which priorities are most important to them, and which priorities they are prepared to compromise on.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 340-342 ◽  
Author(s):  
Siegfried S. Hecker

Raj et al. describe the promise of nuclear energy as a sustainable, affordable, and carbon-free source available this century on a scale that can help meet the world's growing need for energy and help slow the pace of global climate change. However, the factor of millions gain in energy release from nuclear fssion compared to all conventional energy sources that tap the energy of electrons (Figure 1) has also been used to create explosives of unprecedented lethality and, hence, poses a serious challenge to the expansion of nuclear energy worldwide. Although the end of the cold war has eliminated the threat of annihilating humanity, the likelihood of a devastating nuclear attack has increased as more nations, subnational groups, and terrorists seek to acquire nuclear weapons.


Glaciers ◽  
2015 ◽  
Author(s):  
Jorge Daniel Taillant

In the preceding chapters of this book, we’ve traveled through a world of ice that was probably largely uncharted for most of us. Hopefully, we’ve learned a little bit about these fantastic frozen natural resources that play such a fundamental role in the sustainability and balance of our global ecosystem. Glaciers are melting. They are in danger because we have placed them in danger and, as such, we need to take note of and responsibility for this vulnerability, not only to protect glaciers but also to protect the very essence of our global habitat. Glaciers have been unprotected because they are obscure, removed, alien to our daily lives, located in far away places that are for the most part inhospitable to our way of life. And yet, they are a fundamental and integral part of our way of life. With modern tools like the Internet and programs like Google Earth, we can get closer to these fabulous vulnerable resources, to learn about them and work to protect them. The world is challenged today to address global climate change. If we envision a sustainable and harmonious environment in our future, we must progressively move away from fossil fuels and introduce a more balanced and sustainable mix of energy sources grounded on renewable energy. We must find solutions to generating, harnessing, transporting, and managing renewable energies, and we must progressively phase out oil and gas from our daily lives. It is possible; it just takes personal and collective conviction to set ourselves in motion to achieve this goal. Glaciers are a majestic resource, inspiring awe and wonder in a world of frozen beauty that awaits our discovery but that also alerts us to our excesses and indifference. We are losing our glaciers because we have ignored the extreme vulnerability of our planetary ecosystem, and we now must face difficult decisions about policy, consumption, and lifestyle changes that shake the foundations of our society. Global climate change for many seems intangible.


2013 ◽  
Vol 01 (01) ◽  
pp. 1350006 ◽  
Author(s):  
Ying CHEN ◽  
Zhe LIU

Human society is facing great challenges to address global climate change. How to move the international climate process forward is still a serious problem for politicians. Geoengineering's, so called Plan B to cope with climate change has attracted attentions of the international community with a lot of debate on its impact, risks from an ethical view as well as global governance at the level. In this paper, we focus on some important issues of geoengineering including the definition, characteristics, ethics and global governance, etc. and then put forward some suggestions for China's considerations.


2015 ◽  
Vol 21 (2) ◽  
pp. 308-317
Author(s):  
Eric Gilder ◽  
Dilip K. Pal

Abstract It is vital for security experts to learn from the historical records of global climate change as to how the human society has been impacted by its consequences in the “new” Anthropocene Epoch. Some of these consequences of global climate change include the perishing of several human settlements in different parts of the globe at different times, e.g., in 1700 B.C., prolonged drought contributed to the demise of Harappan civilization in northwest India. In 1200 B.C., under a similar climatic extremity, the Mycenaean civilization in present-day Greece (as well as the Mill Creek culture of the northwestern part of the present-day US state of Iowa) perished. Why did some societies under such climatic events perish while others survived? Lack of preparedness of one society and its failure to anticipate and adapt to the extreme climatic events might have attributed to their extinction. The authors will also analyze the extinction of one European Norse society in Greenland during the Little Ice Age (about 600 years ago), as compared to the still-surviving Inuit society in the northern segment of Greenland, which faced even harsher climatic conditions during the Little Ice Age than the extinct Norsemen. This is how the adaptability and “expectation of the worst” matter for the survival of a particular community against climatic “black swan” events (Taleb, 2007). Similar impacts in terms of sea-level rise expected by the year 2100 whereby major human populations of many parts of the world are expected to lose their environmental evolutionary “niche” will be discussed. Rising temperature will not only complicate human health issues, but also will it take its toll on the staple food producing agricultural belts in some latitudinal expanse. It will also worsen the living condition of the populace living in areas where climate is marginal. Through the Socio-Economic Systems Model provided by Vadineanu (2001), the authors will next consider the effect of extant policy-making “prisms” responding to climate change (such as the “Club of Rome” versus the “Club for Growth” visions) as concerns the ongoing process of globalization and survival of the nation-state.


2021 ◽  
Vol 20 (2) ◽  
pp. 138-155 ◽  
Author(s):  
Rachel Hartnett

Global climate change threatens to kill or displace hundreds of thousands of people and will irrevocably change the lifestyles of practically everyone on the planet. However, the effect of imperialism and colonialism on climate change is a topic that has not received adequate scrutiny. Empire has been a significant factor in the rise of fossil fuels. The complicated connections between conservation and empire often make it difficult to reconcile the two disparate fields of ecocriticism and postcolonial studies. This paper will discuss how empire and imperialism have contributed to, and continue to shape, the ever-looming threat of global climate crisis, especially as it manifests in the tropics. Global climate change reinforces disparate economic, social, and racial conditions that were started, fostered, and thrived throughout the long history of colonization, inscribing climate change as a new, slow form of imperialism that is retracing the pathways that colonialism and globalism have already formed. Ultimately, it may only be by considering climate change through a postcolonial lens and utilizing indigenous resistance that the damage of this new form of climate imperialism can be undone.


1996 ◽  
Vol 790 (1 The Baked App) ◽  
pp. 139-150 ◽  
Author(s):  
SAMUEL C. MORRIS ◽  
GARY A. GOLDSTEIN ◽  
A. SANGHI ◽  
DOUGLAS HILL

Sign in / Sign up

Export Citation Format

Share Document