scholarly journals A method for calculation of forces acting on air cooled gas turbine blades based on the aerodynamic theory

2013 ◽  
Vol 17 (2) ◽  
pp. 547-554
Author(s):  
Vojin Grkovic

The paper presents the mathematical model and the procedure for calculation of the resultant force acting on the air cooled gas turbine blade(s) based on the aerodynamic theory and computation of the circulation around the blade profile. In the conducted analysis was examined the influence of the cooling air mass flow expressed through the cooling air flow parameter ?c, as well as, the values of the inlet and outlet angles ?1 and ?2, on the magnitude of the tangential and axial forces. The procedure and analysis were exemplified by the calculation of the tangential and axial forces magnitudes.

2009 ◽  
Vol 13 (1) ◽  
pp. 147-164 ◽  
Author(s):  
Ion Ion ◽  
Anibal Portinha ◽  
Jorge Martins ◽  
Vasco Teixeira ◽  
Joaquim Carneiro

Zirconia stabilized with 8 wt.% Y2O3 is the most common material to be applied in thermal barrier coatings owing to its excellent properties: low thermal conductivity, high toughness and thermal expansion coefficient as ceramic material. Calculation has been made to evaluate the gains of thermal barrier coatings applied on gas turbine blades. The study considers a top ceramic coating Zirconia stabilized with 8 wt.% Y2O3 on a NiCoCrAlY bond coat and Inconel 738LC as substrate. For different thickness and different cooling air flow rates, a thermodynamic analysis has been performed and pollutants emissions (CO, NOx) have been estimated to analyze the effect of rising the gas inlet temperature. The effect of thickness and thermal conductivity of top coating and the mass flow rate of cooling air have been analyzed. The model for heat transfer analysis gives the temperature reduction through the wall blade for the considered conditions and the results presented in this contribution are restricted to a two considered limits: (1) maximum allowable temperature for top layer (1200?C) and (2) for blade material (1000?C). The model can be used to analyze other materials that support higher temperatures helping in the development of new materials for thermal barrier coatings.


Author(s):  
Jingjin Ji ◽  
Danping Huang ◽  
Bo Sun ◽  
Shuhong Peng ◽  
Chengxiong Pan

Conventional gas turbine secondary air system in early stage typically uses a fixed throttle unit between supply side which is compressor bleeding point and demand side which is turbine blade. The cooling air mass flow strongly depends on the extraction pressure characteristics of compressor. Optimal amount of cooling air is supplied only in design point in this way. The cooling air mass flow would be either too much or too less in off design condition. Recently, heavy duty gas turbine manufacturers introduced an active control method for secondary air system. The main strategy is to adjust the cooling air valve set point as a function of gas turbine load percentage in order to adjust cooling air pressure ratio and cooling air mass flow as well. With this active control strategy, cooling mass flow is separated from compressor extraction pressure characteristics, and it can provide a better way to deal with combustion contaminant issues. But it is still a problem that there is no dependence relationship between cooling air valve set point and operating ambient temperature in that strategy. That is to say, the cooling air pressure ratio is constant while varying ambient temperature at base load. In order to quantitatively analyze this phenomena, a 1-dimensional integrated gas turbine thermodynamic analysis method is first applied to obtain the extraction pressure characteristics of compressor for all bleeding points. In the meantime, the optimal cooling air mass flow for turbine blades in different operating conditions is evaluated by a 0-dimensional heat transfer assessment method. A 1-dimensional fluid network analysis method is then employed to calculate the cooling air mass flow variation characteristics for 2 typical throttle configurations between compressor bleeding points and turbine blades, the first one is setting a fixed throttle unit, and the second one is setting constant cooling air pressure ratio by a cooling air control valve. Quantitative calculation results show that the cooling air supply will not always meet the optimal requirements at different ambient temperature conditions with neither of the 2 configurations. This paper further optimized the active control strategy. With the optimized strategy, cooling air supply not only no longer depends on extraction characteristics of compressor, but also could be actively adjusted according to the optimal requirements of turbine blades at different ambient temperature conditions. Performance evaluation results show that the optimized active control strategy could enhance the overall efficiency without exceeding maximum allowable metal temperature of turbine blades.


Alloy Digest ◽  
2004 ◽  
Vol 53 (12) ◽  

Abstract Udimet L-605 is a high-temperature aerospace alloy with excellent strength and oxidation resistance. It is used in applications such as gas turbine blades and combustion area parts. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: CO-109. Producer or source: Special Metals Corporation.


Sign in / Sign up

Export Citation Format

Share Document