scholarly journals Influence of friction stir welding parameters on properties of 2024 T3 aluminium alloy joints

2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 21-28 ◽  
Author(s):  
Abdsalam Eramah ◽  
Marko Rakin ◽  
Darko Veljic ◽  
Srdjan Tadic ◽  
Nenad Radovic ◽  
...  

The aim of this work is to analyse the process of friction stir welding (FSW) of 3mm thick aluminium plates made of high strength aluminium alloy - 2024 T3, as well as to assess the mechanical properties of the produced joints. FSW is a modern procedure which enables joining of similar and dissimilar materials in the solid state, by the combined action of heat and mechanical work. This paper presents an analysis of the experimental results obtained by testing the butt welded joints. Tensile strength of the produced joints is assessed, as well as the distribution of hardness, micro-and macrostructure through the joints (in the base material, nugget, heat affected zone and thermo-mechanically affected zone). Different combinations of the tool rotation speed and the welding speed are used, and the dependence of the properties of the joints on these parameters of welding technology is determined.

2016 ◽  
Vol 857 ◽  
pp. 228-231
Author(s):  
Ho Sung Lee ◽  
Ye Rim Lee ◽  
Kyung Ju Min

Aluminum-Lithium alloys have been found to exhibit superior mechanical properties as compared to the conventional aerospace aluminum alloys in terms of high strength, high modulus, low density, good corrosion resistance and fracture toughness at cryogenic temperatures. Even though they do not form low-melting eutectics during fusion welding, there are still problems like porosity, solidification cracking, and loss of lithium. This is why solid state friction stir welding is important in this alloy. It is known that using Al-Cu-Li alloy and friction stir welding to super lightweight external tank for space shuttle, significant weight reduction has been achieved. The objective of this paper is to investigate the effect of friction stir tool rotation speed on mechanical and microstructural properties of Al-Cu-Li alloy. The plates were joined with friction stir welding process using different tool rotation speeds (300-800 rpm) and welding speeds (120-420 mm/min), which are the two prime welding parameters in this process.


2013 ◽  
Vol 554-557 ◽  
pp. 985-995 ◽  
Author(s):  
Enrico Lertora ◽  
Chiara Mandolfino ◽  
Carla Gambaro

In aeronautics and aerospace construction, whenever a seam is needed between aluminum alloy parts, riveting, nailing or bolting are the preferred methods of junction. Friction stir welding technology has made possible the realization of high strength aluminum alloy joints, which are normally considered non-weldable with conventional welding techniques.


2016 ◽  
Vol 835 ◽  
pp. 210-215
Author(s):  
Máté Nagy ◽  
Mária Behúlová

The paper deals with the friction stir welding (FSW) of the high strength EN AW 7075-T651 aluminium alloy with the aim to analyze the influence of welding parameters on the mechanical properties of Al-weld joints. FSW represents relatively novel solid-state technology of material joining which can be successfully applied for welding of several metallic alloys including the high-strength aluminium alloys that are hard to weld by conventional fusion welding processes. In cooperation with VÚZ - PI SR Bratislava, nine experimental weld joints of samples with dimensions of 300 × 150 × 10 mm were prepared using the welding machine of the FSW-LM-060 type and different parameters of welding – the welding speed from 60 to 120 mm/min and the tool rotation rate from 600 to 1000 rpm in clockwise direction. The quality of weld joints was evaluated by static tensile tests and micro-hardness measurements. According to obtained results of tensile testing, the average values of ultimate strength of weld joints are by 32.2 % lower comparing with the ultimate strength of the base material. On the other hand, the ductility increased by 7.2 %. The highest micro-hardness of weld joints at the level of 129 HV was measured in thermo-mechanically affected zone on the retreating side.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 9 ◽  
Author(s):  
V. Jaiganesh ◽  
D. Srinivasan ◽  
P. Sevvel

Aluminum Alloy 2014 is a light weight high strength alloy used widely in the aerospace and also in other industries. 2014 is the second most popular of the 2000-series aluminium alloys, after 2024 aluminium alloy. However, it is difficult to weld, as it is subject to cracking. Joining of 2014 aluminium alloy in friction stir welding which is based on frictional heat generated through contact between a rotating tool and the work piece. Determination of the welding parameters such as spindle speed, transverse feed , tilt angle plays an important role in weld strength. The whole optimization process is carried out using Taguchi technique. The SEM analysis is done to check the micro structure of the material after welding by electron interaction with the atoms in the sample. Tensile test have been conducted and the s-n ratio curve is generated. The test is conducted and analysed on the basis of ASTM standards.


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


Author(s):  
Santosh Vanama

<p>The paper propose modelling and fabrication of friction stir welding end-effector for ABB IRB1410 robot. A dynamically developing version of pressure welding processes, join material without reaching the fusion temperature called friction stir welding. As friction stir welding occurs in solid state, no solidification structures are created thereby eliminating the brittle and eutectic phase’s common to fusion welding of high strength aluminium alloys. In this paper, Friction stir welding is applied to aluminum sheets of 2 mm thickness. A prototype setup is developed to monitor the evolution of main forces and tool temperature during the operation. Pressure of a gripper plays a major role for tool rotation and developing torque.  Fabrication of the tool has done. Force calculations are done by placing the sensors on the outer surface of gripper. Methods of evaluating weld quality are surveyed as well.</p>


2014 ◽  
Vol 59 (1) ◽  
pp. 385-392
Author(s):  
B. Rams ◽  
A. Pietras ◽  
K. Mroczka

Abstract The article presents application of FSW method for joining elements made of cast aluminium alloys which are hardly weldable with other known welding techniques. Research’s results of plasticizing process of aluminium and moulding of seam weld during different FSW process’ conditions were also presented. Influence of welding parameters, shape and dimensions of tool on weld structure, welding stability and quality was examined. Application of FSW method was exemplified on welding of hemispheres for valves made of cast aluminium alloy EN AC-43200.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1024 ◽  
Author(s):  
Robert Kosturek ◽  
Lucjan Śnieżek ◽  
Janusz Torzewski ◽  
Marcin Wachowski

The aim of this research was to investigate the effect of friction stir welding (FSW) parameters on microstructure and mechanical properties of Sc-modified AA2519 extrusion joints. The workpiece was welded by FSW in non-heat-treated condition with seven different sets of welding parameters. For each obtained joint macrostructure and microstructure observations were performed. Mechanical properties of joints were investigated using tensile test together with localization of fracture location. Joint efficiencies were established by comparing measured joints tensile strength to the value for base material. The obtained results show that investigated FSW joints of Sc-modified AA2519 in the non-heat-treated condition have joint efficiency within the range 87–95%. In the joints obtained with the lowest ratio of the tool rotation speed to the tool traverse speed, the occurrence of imperfections (voids) localized in the stir zone was reported. Three selected samples were subjected to further investigations consisting microhardness distribution and scanning electron microscopy fractography analysis. As the result of dynamic recrystallization, the microhardness of the base material value of 86 HV0.1 increased to about 110–125 HV0.1 in the stir zone depending on the used welding parameters. Due to lack of the strengthening phase and low strain hardening of used alloy the lack of a significantly softened zone was reported by both microhardness analysis and investigation of the fractured samples.


2020 ◽  
Vol 866 ◽  
pp. 54-62
Author(s):  
Hong Feng Wang ◽  
Sheng Rong Liu ◽  
Xiao Le Ge ◽  
Jia Fei Pu ◽  
Lei Bao ◽  
...  

10mm thickness AZ31B magnesium alloy was used as the friction stir welding object in this study. Different welding joints were obtained by setting different friction stir welding parameters. Metallographic analysis and impact loading test were carried out on the joint area. The experiment results show that (i) when the rotational speed of the stirring head is 600rpm and the welding speed is 120mm/min, the microstructure of the joint has the characteristics of compactness, thinning, and large-area twinning, which is beneficial to improve the plasticity of the joint area; (ii) the impact load of the joint is the highest, but lower than that of the base material, which is 95.5% of the base material; (iii) the fracture of impact specimen presents ductile fracture.


2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


Sign in / Sign up

Export Citation Format

Share Document