scholarly journals Particulate matter emission from a heavy duty diesel engine with three binary blends

2018 ◽  
Vol 22 (5) ◽  
pp. 2065-2076 ◽  
Author(s):  
Shuli Wang ◽  
Simon Sprengers ◽  
Bart Somers ◽  
Goey De

Low temperature combustion using gasoline-like fuels has the potential to pro-vide high efficiencies and extremely low NOx and soot emissions. In this study, different volume percentages (30%~70%) of iso-octane, toluene, and n-butanol are blended with n-heptane separately. These blends with different composition ratios are tested on a modified single-cylinder research engine. Also, simulations are performed using a homogeneous reactor method to know the fuel-chemical effects on particulate matter emissions. Thirdly, a composition ratio of 70% is selected to perform further experiments based on the results from the initial composition ratio experiments with a focus on the particle size distributions. It was found that if the test fuel can provide sufficient ignition delay to allow fuel to premix with air fully, the soot emissions will be low and particle size is small even if the test fuel contains a lot of aromatic compounds.

1994 ◽  
Author(s):  
C. J. J. Den Ouden ◽  
R. H. Clark ◽  
L. T. Cowley ◽  
R. J. Stradling ◽  
W. W. Lange ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Nattasut Mantananont ◽  
Savitri Garivait ◽  
Suthum Patumsawad

This study is focused on the emission of fixed bed combustor batch operated. Real-time analyser ELPI (electrical low-pressure impactor) system was used to size-segregated particulate matter emission ranging from 40 nm to 10 μm. The results show that total number concentration were3.4×103,1.6×104, and1.5×105 particles/cm3⋅kgfuel, while total mass of particles were 12.2, 8.0, and 6.5 mg/Nm3⋅kgfuelfor combustion of lignite, rice husk and bagasse, respectively. But it can be noticed that cofiring released more particulate matter. Meanwhile it was found that the effect of ratio of over-fired air to total air supply is more pronounced, since decrease in this ratio, the amount of particles are decreased significantly. For particle size distribution, it can be observed that submicron-sized particles dominate and the most prevailing size is in the range: 50 nm<Dp<100 nm, for lignite and agricultural residues. However, during cofiring of fuel mixture at 70% rice husk mass concentration, it is found that there are two major fractions of particle size; 40 nm<Dp<70 nm and 0.2 μm<Dp<0.5 μm. The analysis of particle morphology showed that the isolate shape of submicron particle produced during lignite combustion is characterised by different geometries such as round, capsule, rod, flake-like, whereas the spherical shape is obtained with combustion of rice husk.


2011 ◽  
Vol 130-134 ◽  
pp. 2379-2382
Author(s):  
Da Yu ◽  
Yi Qiang Pei ◽  
Suo Zhu Pan ◽  
Tong Li ◽  
Zhi Qiang Han ◽  
...  

The use of a variety of means of control in the engine combustion temperature in the low load has been more widely used. Although the opacity of the filter paper on smoke (FSN) was used as a standard in many laboratories PM quality parameters measured, but cannot be measured under different conditions the engine size and number of particles in a major change, especially in smaller size The particles on the human body more dangerous trends. So a study of particle size distribution of a heavy diesel engine emission was investigated under the condition of different intake valve closing timing, different EGR, different injection timing and multiple injections.


Author(s):  
Wei Fang ◽  
David B. Kittelson ◽  
William F. Northrop

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion can yield high thermal efficiency and simultaneously low NOx and soot emissions. Although soot emissions from RCCI is very low, hydrocarbon emissions are high, potentially resulting in higher than desired total particulate matter (PM) mass and number caused by semi-volatile species converting the particle phase upon primary dilution in the exhaust plume. Such high organic fraction PM is known to be highly sensitive to the dilution conditions used when collecting samples on a filter or when measuring particle number using particle sizing instruments. In this study, PM emissions from a modified single-cylinder diesel engine operating in RCCI and conventional diesel combustion modes were investigated under different dilution conditions. To investigate the effect of the fumigated fuel on the PM emissions, 150 proof hydrous ethanol and gasoline were used as low reactivity fuels to study the relative contribution of fumigant versus directly injected fuel on the PM emissions. Our study found that PM from RCCI combustion is more sensitive to the variation of dilution conditions than PM from single fuel conventional diesel combustion. RCCI PM primarily consisted of semi-volatile organic compounds and a smaller amount of solid carbonaceous particles. The fumigated fuel had a significant effect on the PM emissions characteristics for RCCI combustion. Hydrous ethanol fueled RCCI PM contained a larger fraction of volatile materials and were more sensitive to the variation of dilution conditions compared to the gasoline fueled RCCI mode.


Sign in / Sign up

Export Citation Format

Share Document