scholarly journals Imitation analysis of cremation furnace heat transfer under the finite element simulation software

2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3357-3365
Author(s):  
Jingyun Jia ◽  
Xiaolong Zou ◽  
Xiantao Chen ◽  
Haibin Wang ◽  
Qiang Sun

To promote the full combustion efficiency of a body cremation furnace during cremation, the temperature and velocity of cremation furnace in the process of body combustion are simulated by finite element model. Firstly, the simplified finite element analysis model of cremation furnace and its finite element software is introduced in this study, and then the flow model, heat transfer model, and combustion model needed in the heat transfer process are described. According to the requirements of the finite element model, the mesh generation process of the cremation furnace model and the numerical solution method are presented. Finally, the model used in this study is verified by the test and simulation results. The results show that the method is reliable. Besides, the design parameters of the temperature part and the combustion speed part of the furnace under six different working conditions are analyzed to further optimize the structure of the furnace. The results of this study provide a good theoretical basis for cremation equipment and promote the development of China?s cremation industry.

Author(s):  
Dongxu Li ◽  
Brian Uy ◽  
Farhad Aslani ◽  
Chao Hou

Spiral welded stainless tubes are produced by helical welding of a continuous strip of stainless steel. Recently, concrete-filled spiral welded stainless steel tubes have found increasing application in the construction industry due to their ease of fabrication and aesthetic appeal. However, an in-depth understanding of the behaviour of this type of structure is still needed due to the lack of proper design guidance and insufficient experimental verification. In this paper, the mechanical performance of concrete-filled spiral welded stainless steel tubes will be numerically investigated with a commercial finite element software package, through which an experimental program can be designed properly. Specifically, the proposed finite element models take into account the effects of material and geometric nonlinearities. Moreover, the initial imperfections of stainless steel tubes and the form of helical welding will be appropriately included. Enhancement of the understanding of the analysis results can be achieved by extending results through a series of parametric studies based on the developed finite element model. Thus, the effects of various design parameters will be further evaluated by using the developed finite element model. Furthermore, for the purposes of wide application of such types of structure, the accuracy of the behaviour prediction in terms of ultimate strength based on current design codes will be studied. The authors herein compared the load capacity between the finite element analysis results and the existing codes of practice.


2020 ◽  
Author(s):  
Bin Zhao ◽  
Haoyang Song ◽  
Diankui Gao ◽  
Lizhi Xu

Abstract In order to improve the computational precision and efficiency of heat transfer of cavity medium of scroll compressor, the Symlet wavelet 10 finite element model is constructed by using the Symlet wavelet 10 function as interpolation function. The heat transfer model of cavity medium of scroll compressor under leakage flow is constructed based on large eddy simulation technology. Heat transfer analysis of cavity medium of scroll compressor is analyzed based on theoretical and experimental analysis. Results show that the Symlet wavelet 10 finite element model has higher precision and higher efficiency than the other two simulations. In addition, the influences of axis meshing clearance and radial meshing clearance on temperature of cavity medium of scroll compressor are discussed, the temperature of cavity medium of scroll compressor increases with axis meshing clearance and radial meshing clearance. The theoretical results can provide the favorable guidance for optimal design and operation of scroll compressor.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2014 ◽  
Vol 1049-1050 ◽  
pp. 378-382
Author(s):  
Ju Bing Zhang ◽  
Shao Xia Zhang ◽  
Ying Zou

In recent years, the problem of the human-induced bridge vibration has attracted more and more concerns. In this paper , a steel structure footbridge named Shuang'an East in Beijing was taken as the example to collect the whole bridge vibration data and build the finite element model with the finite element software. In addition, this research changes the limitation of considering the pedestrian load as a whole with a traffic flow simulation software, which is based on social force model, applying to reflect the pedestrians' locations during walking. Comparing the simulation data with the the measured data, the vibration serviceability of footbridge will decrease with the increasing of the number of the pedestrians. The analysis results will provide reference for the dynamic characteristic of similar structures.


2000 ◽  
Author(s):  
Hsien-Chie Cheng ◽  
Ming-Hsiao Lee ◽  
Kuo-Ning Chiang ◽  
Chung-Wen Chang

Abstract Since the electrical conduction in the COG assembly using a non-conductive adhesive takes place through the connection of the bump and the electrodes, the contact resistance can be applied to the evaluation of the design quality as well as the overall reliability of the particular assembly. It should be further noted that as reported in the literature (e.g., see Liu, 1996; Kristiansen et al, 1998; Nicewarner, 1999; Timsit, 1999), the contact resistance between the bump and the electrode on the substrate strongly depends on the contact stress and the contact area. A higher reliability of the packaging somewhat relies on better contact stability as well as larger bonding stresses. In order to explore the physical contact behaviors of a non-conductive adhesive type of COG assemblies, the contact pressure during manufacturing process sequences and during the temperature variation are extensively investigated using a three-dimensional nonlinear finite element model. The so-called death-birth simulation technique is applied to model the manufacturing process sequences. The typical COG assemblies associated with two types of micro-bumps that are made of different materials: metal and composite are considered as the test vehicle. The contact stress between the electrode and the bump is extensively compared at each manufacturing sequence as well as at elevated temperature in order to investigate the corresponding mechanical interaction. Furthermore, the adhesion stresses of the adhesive are also evaluated to further investigate the possibilities of cracking or delamination within the adhesive and in its interfaces with the die and with the substrate. At last, a parametric finite element model is performed over number of geometry/material design parameters to investigate their impact on the contact/adhesion stresses so as to attain a better reliability design.


2012 ◽  
Vol 443-444 ◽  
pp. 751-756
Author(s):  
Li Jun Suo ◽  
Xia Guang Hu

In China, it is fact that porous concrete base has been used in the construction of asphalt pavement in recent years because porous concrete base has good performance. However, Reasonable design method has not been put forward so far. Therefore, it is necessary to analyze load stress and thermal stress of asphalt pavement which includes porous concrete base in order to put forward theoretical basis for pavement design method. In the paper, three–dimension finite element model of asphalt pavement, which includes porous concrete base and asphalt surface, is created for the purpose of studying load stress and thermal stress of porous concrete base in asphalt pavement. Based on numerical method of three–dimension finite element model, finite element software, such as ANSYS, is employed to study load stress and thermal stress of porous concrete base in asphalt pavement. After that, the effect of different factors on stress is studied, and the factors include thickness of surface, thickness of base and ratio of base’s modulus to foundation’s modulus. Finally, calculation results for stress are compared with each other, and it shows that load stress of porous concrete base decreases with increase of base’s thickness, while thermal stress of porous concrete base increases with increase of base’s thickness. Load stress and thermal stress of porous concrete base decrease with increase of surface’s thickness. Load stress and thermal stress of porous concrete base increase with increase of ratio of base’s modulus to foundation’s modulus.


2020 ◽  
Vol 26 (9) ◽  
pp. 1627-1635
Author(s):  
Dongqing Yang ◽  
Jun Xiong ◽  
Rong Li

Purpose This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method. Design/methodology/approach An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size. Findings The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer. Originality/value The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.


Sign in / Sign up

Export Citation Format

Share Document