scholarly journals Non-differentiable solutions of a family of modified Korteweg-Devries equations within local fractional derivative

2021 ◽  
pp. 110-110
Author(s):  
Yong-Ju Yang

In this paper, a family of modified Korteweg-de Vries equations within local fractional derivative are constructed, and their non-differentiable solutions are discussed by using several methods.

2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 841-845
Author(s):  
Jinze Xu ◽  
Zeng-Shun Chen ◽  
Jian-Hong Wang ◽  
Ping Cui ◽  
Yunru Bai

In this paper, we present the fractal complex transform via a local fractional derivative. The traveling wave solutions for the fractal Korteweg-de Vries equations within local fractional derivative are obtained based on the special functions defined on Cantor sets. The technology is a powerful tool for solving the local fractional non-linear partial differential equations.


2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 4027-4032
Author(s):  
Shu-Xian Deng ◽  
Zhi-Jun Wang

In this paper, we obtain the approximate analytical solution of variable coefficients modified Korteweg-de Vries equation with local fractional derivative by using new iterative method.


2016 ◽  
Vol 14 (1) ◽  
pp. 1122-1124 ◽  
Author(s):  
Ricardo Almeida ◽  
Małgorzata Guzowska ◽  
Tatiana Odzijewicz

AbstractIn this short note we present a new general definition of local fractional derivative, that depends on an unknown kernel. For some appropriate choices of the kernel we obtain some known cases. We establish a relation between this new concept and ordinary differentiation. Using such formula, most of the fundamental properties of the fractional derivative can be derived directly.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Choonkil Park ◽  
R. I. Nuruddeen ◽  
Khalid K. Ali ◽  
Lawal Muhammad ◽  
M. S. Osman ◽  
...  

Abstract This paper aims to investigate the class of fifth-order Korteweg–de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Chun-Ying Long ◽  
Yang Zhao ◽  
Hossein Jafari

The forest new gap models via local fractional calculus are investigated. The JABOWA and FORSKA models are extended to deal with the growth of individual trees defined on Cantor sets. The local fractional growth equations with local fractional derivative and difference are discussed. Our results are first attempted to show the key roles for the nondifferentiable growth of individual trees.


Author(s):  
Jian-Gen Liu ◽  
Xiao-Jun Yang ◽  
Yi-Ying Feng ◽  
Lu-Lu Geng

In this paper, we studied the generalized space and time fractional Korteweg–de Vries (KdV) equation in the sense of the Riemann–Liouville fractional derivative. Initially, the symmetry of this considered equation through the symmetry analysis method was obtained. Next, a one-parameter Lie group of point transformation was yielded. Then, this considered fractional model can be translated into an ordinary differential equation of fractional order via the Erdélyi–Kober fractional differential operator and the Erdélyi–Kober fractional integral operator. Finally, with the help of the nonlinear self-adjointness, conservation laws of the generalized space and time fractional KdV equation can be found. This approach can provide us with a new scheme for studying space and time differential equations of fractional derivative.


Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050031 ◽  
Author(s):  
KANG-JIA WANG

The local fractional derivative (LFD) has gained much interest recently in the field of electrical circuits. This paper proposes a non-differentiable (ND) model of high-pass filter described by the LFD, where the ND transfer function is obtained with the help of the local fractional Laplace transform, and its parameters and properties are studied. The obtained results reveal the sufficiency of the LFD for analyzing circuit systems in fractal space.


Author(s):  
Xiaorang Li ◽  
Christopher Essex ◽  
Matt Davison

A new definition of fractional order derivative is given and its basic properties are investigated. This definition is based on the Weyl derivative and is a local property of functions. It can be applied to non-differentiable functions and may be useful for studying fractal curves.


Sign in / Sign up

Export Citation Format

Share Document