scholarly journals Mathematical modeling for output yield obtained by single slope solar still integrated with sand troughs

2021 ◽  
pp. 217-217
Author(s):  
Nagaraju Vellanki ◽  
Murali Govindarajan ◽  
Nagarjunavarma Ganna ◽  
Sivakandhan Chinnasamy

The crises for potable water is inevitable, due to increasing population. Solar desalination is apt technology to convert brack water and sea water into potable one. In the current work a mathematical modelling of a single slope solar still integrated with sand troughs is presented. The model is validated with the experimental results of a solar still with 3cm of water level at the basin. The mathematical model findings and results obtained with the experimental investigations are within ?10% deviation. Capillary effect was proposed to obtain the yield daily basis and thermal effect model was integrated with the capillary effect model. From the results, it is understood that the yield obtained is more in the case of solar stills with sand troughs when compared to solar stills without sand troughs. Further the model is used for predicting yield for 1cm and 2cm of water levels at the basin. It is observed that the maximum yield was obtained for 1cm water level at the basin. There is a good agreement between theoritacal results and experimental results. It shows that the still produce better yield with the lower depth of water level at the basin, this may be because of the availability of more space in the sand for evaporation due to capillary effect in the troughs.

2022 ◽  
pp. 1118-1129
Author(s):  
Nawaf N. Hamadneh

In this study, the performance of adaptive multilayer perceptron neural network (MLPNN) for predicting the Dead Sea water level is discussed. Firefly Algorithm (FFA), as an optimization algorithm is used for training the neural networks. To propose the MLPNN-FFA model, Dead Sea water levels over the period 1810–2005 are applied to train MLPNN. Statistical tests evaluate the accuracy of the hybrid MLPNN-FFA model. The predicted values of the proposed model were compared with the results obtained by another method. The results reveal that the artificial neural network (ANN) models exhibit high accuracy and reliability for the prediction of the Dead Sea water levels. The results also reveal that the Dead Sea water level would be around -450 until 2050.


2020 ◽  
Vol 11 (3) ◽  
pp. 19-29
Author(s):  
Nawaf N. Hamadneh

In this study, the performance of adaptive multilayer perceptron neural network (MLPNN) for predicting the Dead Sea water level is discussed. Firefly Algorithm (FFA), as an optimization algorithm is used for training the neural networks. To propose the MLPNN-FFA model, Dead Sea water levels over the period 1810–2005 are applied to train MLPNN. Statistical tests evaluate the accuracy of the hybrid MLPNN-FFA model. The predicted values of the proposed model were compared with the results obtained by another method. The results reveal that the artificial neural network (ANN) models exhibit high accuracy and reliability for the prediction of the Dead Sea water levels. The results also reveal that the Dead Sea water level would be around -450 until 2050.


Author(s):  
ADAM PERZ ◽  
KATARZYNA PLEWA

Water level fluctuations of coastal lakes are more dynamic than in case of other lakes located in the medium latitude zone. In this study, mean annual values of water level of 6 coastal lakes (Resko Przymorskie, Jamno, Bukowo, Gardno, Łebsko, Druzno) of southern coast of the Baltic Sea and sea water level were analyzed, using correlation coefficient, it was also pointed at possibility of modelling dependencies between chosen variables using Copula theory. The highest correlation coefficient was noted for the pair Łebsko Lake–Baltic Sea, gauge station in Łeba (0.91), and the lowest one for the pair Jamno Lake–Baltic Sea, gauge station in Kołobrzeg (0.67). The results of correlation analysis were proved by analysis using Archimedean Copulas. The highest synchronicity in relation to sea water levels was observed for Łebsko Lake (77.54%), the lowest one for Jamno Lake (59.98%). The method on the basis of Copula functions applied in the study shows that not only traditional correlation methods allow to verify dependencies and their strength between data series. There was noted strong dependency between correlation coefficient values and synchronicity. The obtained results allow to conclude that there is diversified strength of dependencies between mean annual water levels of coastal lakes in Poland and mean annual water levels of the Baltic Sea.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1292
Author(s):  
Katarzyna Plewa ◽  
Adam Perz ◽  
Dariusz Wrzesiński ◽  
Leszek Sobkowiak

The hydrology of coastal lakes differs significantly from that of inland water bodies due to the influence of the neighboring sea. Observed climatic changes are expected to enhance the effect of the sea on coastal lake ecosystems, which makes research on sea–lake interactions even more significant. In this study, on the basis of maximum annual and monthly values of water level, dependencies among the water levels of six lakes located along the southern coast of the Baltic Sea in Poland, and the Baltic Sea water levels were analyzed. First, the Spearman rank correlation and the linear regression method were applied. Then, selected copulas were used to find joint distributions of the studied time series. In the next stage, the degrees of synchronous and asynchronous occurrences of maximum water levels in lakes and the sea were calculated. The study revealed that correlations between the maximum annual water levels in coastal lakes and in the Baltic Sea in the selected gauge stations were very strong and statistically significant. These results were confirmed by a synchronicity analysis carried out with the help of a copula function. The highest relationship was detected in the case of Lake Resko Przymorskie (correlation coefficient 0.86, synchronicity 75.18%), while the lowest were observed in Lakes Jamno (0.62 and 58.20%, respectively) and Bukowo (0.60 and 56.82%, respectively). The relation strength between maximum water levels of the sea and coastal lakes may increase in the future due to sea level rises caused by climate warming.


2019 ◽  
Vol 25 (2) ◽  
pp. 57-71
Author(s):  
Mowaffaq Ali Hammadi ◽  
Najim Abid Jasim

In the present work, experimental tests was done to explain the effect of insulation and water level on the yield output. Linear basin, single slope solar still used to do this purpose. The test was done from May to August 2017 in Mosul City-Iraq (Latitude: Longitude: Elevation: 200 m, and  South-East face). Experimental results showed that the yield output of the still increased by 20.785% and 19.864% in case of using thermal insulation at 4cm and 5cm respectively, also the yield output decrease by 15.134% as the water level increase from 4 to 5cm, with the presence of insulation and 14.147% without it. It has been conclude that the insulation and water level play important role in the process of passive solar desalination, also the desalination process has significant value at night and cannot be ignored.  


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


Sign in / Sign up

Export Citation Format

Share Document