scholarly journals Experimental comparative analysis of operating characteristics of double circuit flat-plate solar collector with thermosiphon circulation and flat solar collector with chemical coating

2021 ◽  
pp. 173-173
Author(s):  
Yedilkhan Amirgaliyev ◽  
Murat Kunelbayev ◽  
Talgat Ormanov ◽  
Talgat Sundetov ◽  
Salauat Daulbayev

The given article considers results of experimental measurements, productivity comparison and master controller executive system of flat-plate solar collector with thermosiphon circulation and flat solar collector with special chemical coating. There has been developed master controllers control module, which receives data from temperature and lighting sensors, obtained in operation process. The aim of the research is getting the solar collectors? optimal parameters, representing maximal usage performance index, controllability, as well as, construction type, allowing energy saving. In the recent years flat-plate solar collectors with chemical coating are characterized with higher efficiency in real conditions usage. The developed master controllers? executive system is used for monitoring the installation?s main parameters, as well, it permits to compare characteristics of solar collector with thermosiphon circulation to those of flat-plate solar collector with chemical coating. The obtained experimental data has shown, that flat solar collectors, using chemical coating as a transfer medium in solar heat supply system, have an advantage in the context of usage effectiveness. The heat output and water heating in a flat solar collector are calculated, which vary depending on the intensity of solar radiation. The thermal efficiency of a flat solar collector with a thermosiphon tank based on the Mojo V3 platform using Dallas sensors is calculated.

2018 ◽  
Vol 4 (3) ◽  
pp. 25 ◽  
Author(s):  
Daniel Ferrández ◽  
Carlos Moron ◽  
Jorge Pablo Díaz ◽  
Pablo Saiz

ResumenEl actual Código Técnico de la Edificación (CTE) pone de manifiesto la necesidad de cubrir parte de la demanda energética requerida para el abastecimiento de agua caliente sanitaria y climatización de piscinas cubiertas mediante sistemas de aprovechamiento de la energía solar térmica. En este artículo se presenta una comparativa entre las dos principales tipologías de captadores solares térmicos que existen en el mercado: el captador de placa plana y el captador de tubo de vacío, atendiendo a criterios de fracción solar, diseño e integración arquitectónica. Todo ello a fin de discernir en qué circunstancias es más favorable el uso de uno u otro sistema, comparando los resultados obtenidos mediante programas de simulación con la toma de medidas in situ.AbstractThe current Technical Building Code (CTE) highlights the need to cover part of the energy demand required for the supply of hot water and heating of indoor swimming pools using solar thermal systems. This article presents a comparison between the two main types of solar thermal collectors that exist in the market: the flat plate solar collector and the vacuum tube solar collector, according to criteria of solar fraction, design and architectural integration. All of this in order to discern in what circumstances the use of one or the other system is more favourable, comparing the results obtained through simulation programs with the taking of measurements in situ.


Author(s):  
Mohamed Nabeel A. Negm ◽  
Ahmed A. Abdel-Rehim ◽  
Ahmed A. A. Attia

The world is still dependent on fossil fuels as a continuous and stable energy source, but rising concerns for depletion of these fuels and the steady increase in demand for clean “green” energy have led to the rapid growth of the renewable energy field. As one of the most available energy sources with high energy conversion efficiency, solar energy is the most prominent of these energies as it also has the least effect on the environment. Flat plate collectors are the most common solar collectors, while their efficiency is limited by their absorber’s effectiveness in energy absorption and the transfer of this energy to the working fluid. The efficiency of flat plate solar collectors can be increased by using nanofluids as the working fluid. Nanofluids are a relatively recent development which can greatly enhance the thermophysical properties of working fluids. In the present study, the effect of using Al2O3/Water nanofluid as the working fluid on the efficiency of a thermosyphon flat-plate solar collector was experimentally investigated. The results of this experiment show an increase in efficiency when using nanofluids as the working fluid compared to distilled water. It was found that Al2O3/water nanofluids are a viable enhancement for the efficiency of flat-plate solar collectors.


2016 ◽  
Vol 831 ◽  
pp. 181-187 ◽  
Author(s):  
Janusz T. Cieśliński ◽  
Bartosz Dawidowicz ◽  
Aleksandra Popakul

Solar collectors is one of the technologies absorbing energy from solar beam and utilizing it for heating purposes, displacing the need to burn fossil fuels. There are many ways to improve effectiveness of the solar collectors [1,2]. Recent method to absorb more heat from the solar beam is to modify thermal characteristics of the working fluid. For this purpose one can use nanofluids, i.e. suspensions of metallic or nonmetallic nanoparticles in a base fluid [3].


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Saif Ali Kadhim ◽  
Osama Abd AL-Munaf Ibrahim

Solar energy is one of the most important types of renewable energy and is characterized by its availability, especially in Iraq. It can be used in many applications, including supply thermal energy by solar collectors. Improving the thermal efficiency of solar collector leads to an increase in the thermal energy supplied. Using a nano-fluid instead of base fluid (water is often used) as a working fluid is a method many used to increase the thermal efficiency of solar collectors. In this article, the latest research that used nano-fluid as a working fluid in evaluating the thermal efficiency of solar collector, type flat plate was reviewed. The thermal efficiency improvement of flat plate solar collector was reviewed based on the type of nanoparticles (metal oxides, semiconductors oxides, carbon compounds) used in the base fluid and comparison was made between these nanoparticles under the same conditions. Moreover, the effect of varying the concentration of nanoparticles in the base fluid and changing the working fluid flow rate on the thermal efficiency of flat plate solar collector was also reviewed. The results of the review showed that nano-fluids containing carbon compounds are better than other nano-fluids and that copper oxide is better than the rest of the metal oxides used in improving the thermal efficiency of flat plate solar collectors.


2019 ◽  
Vol 97 (10) ◽  
pp. 1115-1124 ◽  
Author(s):  
Khosro Lari ◽  
Ali Tarokh ◽  
Mohammad Naghizadeh

A standard thermal solar collector can be used for both hot water production and air heating purposes. Gas-filled solar collectors represent a new emerging design approach with enhanced characteristics. In this research, numerical modeling is utilized to study radiative effects of the participating gases on the performance of solar collectors. The coupled radiative–convective heat transfer in the solar collector is considered and the collector cavity is considered as a radiatively participating medium. The finite volume method has been adopted to solve the governing equations and discrete ordinates method is used for radiative transfer. After validating the model used in this study, it is used to obtain the heat transfer characteristics of a flat-plate solar collector with real solar conditions of the city of Kerman, Iran, in summer at a wide range of air absorption coefficients. According to the results, by increasing the absorption coefficient of the air, the temperature of the absorber plate is reduced and the air temperature is increased, but the increase of air temperature is much higher than the reduction of absorber temperature. Hence, it is concluded that it is possible to use participating gases in the solar air heaters to enhance the performance of the collector.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1715
Author(s):  
Minjung Lee ◽  
Yunchan Shin ◽  
Honghyun Cho

This study experimentally investigated the performance characteristics of water and MWCNT/Fe3O4 binary nanofluid as a working fluid in a flat plate and vacuum tube solar collectors. As a result, the highest efficiency was 80.3% when 0.005 vol.% MWCNT/0.01 vol.% Fe3O4 binary nanofluid was applied to the flat plate solar collector, which was a 17.6% increase in efficiency, compared to that when water was used. In the case of the vacuum tube solar collector, the highest efficiency was 79.8%, which was 24.9% higher than when water was applied. Besides, when the mass flux of MWCNT/Fe3O4 binary nanofluid was changed from 420 to 598 kg/s·m2, the maximum efficiencies of the flat plate and vacuum tube solar collectors were increased by 7.8% and 8.3%, respectively. When the MWCNT/Fe3O4 binary nanofluid was applied to the vacuum tube solar collector, the efficiency improvement was much more significant, and the high performance could be maintained for wide operating conditions, compared with the flat plate solar collector.


Sign in / Sign up

Export Citation Format

Share Document